本文整理匯總了Python中OCO_Matrix.OCO_Matrix.labels方法的典型用法代碼示例。如果您正苦於以下問題:Python OCO_Matrix.labels方法的具體用法?Python OCO_Matrix.labels怎麽用?Python OCO_Matrix.labels使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.labels方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write_xco2_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_xco2_file(log_sounding_dict, xco2_filename):
xco2_fileobj = OCO_Matrix()
xco2_fileobj.file_id = 'True xco2 from orbit simulator'
xco2_fileobj.labels = [XCO2_LABEL_NAME]
xco2_fileobj.data = numpy.zeros((1,1), dtype=float)
xco2_fileobj.data[0,0] = log_sounding_dict[XCO2_COL_NAME]
xco2_fileobj.write(xco2_filename)
示例2: create_mean_psurf
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def create_mean_psurf(runlog_file, psurf_file):
print 'runlog_file = ', runlog_file
print 'psurf_file = ', psurf_file
runlog_fobj = open(runlog_file, "r")
header_cols = runlog_fobj.readline().split()
pout_col = header_cols.index('pout')
pouts = []
for runlog_line in runlog_fobj.readlines():
runlog_parts = runlog_line.split()
pouts.append(float(runlog_parts[pout_col]))
runlog_fobj.close()
avg_psurf = mean(pouts) * 1e2
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = "Mean surface pressure from runlog file: %s" % runlog_file
out_mat_obj.labels = ['LEVEL', 'PSURF']
out_mat_obj.data = ones((1, 2), dtype=float)
out_mat_obj.data[0, 1] = avg_psurf
out_mat_obj.write(psurf_file)
示例3: extract_ils_from_hdf
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def extract_ils_from_hdf(hdf_file, output_dir, reverse=False):
print 'Opening HDF file: %s' % hdf_file
with contextlib.closing(h5py.File(hdf_file, 'r')) as hdf_obj:
reported_soundings = []
for snd_idx, rep_val in enumerate(hdf_obj['Metadata']['ReportedSoundings']):
if rep_val > 0:
reported_soundings.append( snd_idx + 1 )
ils_delta_lambda = hdf_obj['InstrumentHeader']['ils_delta_lambda']
ils_relative_response = hdf_obj['InstrumentHeader']['ils_relative_response']
num_bands = ils_delta_lambda.shape[0]
num_ils_parameters = ils_delta_lambda.shape[2]
num_ils_wndepend = ils_delta_lambda.shape[3]
labels = [ 'ILS_PIXELS' ]
for band_num in range(1, num_bands+1):
labels.append('ILS_DELTA_LAMBDA_%d' % band_num)
labels.append('ILS_RESPONSE_%d' % band_num)
for snd_idx, sounding_id in enumerate(reported_soundings):
output_filename = os.path.join(output_dir, 'ils_%d.dat' % sounding_id)
print 'Extracting data for sounding %d into %s' % (sounding_id, output_filename)
ils_file = OCO_Matrix()
ils_file.data = numpy.zeros((num_ils_parameters * num_ils_wndepend, num_bands*2+1), dtype=float)
row_beg = 0
for color_index in range(num_ils_parameters):
print 'Extracting color %d' % (color_index+1)
row_end = row_beg+num_ils_wndepend
ils_file.data[row_beg:row_end, 0] = color_index + 1
for band_idx, col_idx in zip(range(num_bands), range(1,1+2*num_bands,2)):
ils_file.data[row_beg:row_end, col_idx] = ils_delta_lambda[band_idx, snd_idx, color_index, :]
if reverse:
ils_file.data[row_beg:row_end, col_idx+1] = ils_relative_response[band_idx, snd_idx, color_index, :][::-1]
else:
ils_file.data[row_beg:row_end, col_idx+1] = ils_relative_response[band_idx, snd_idx, color_index, :]
row_beg = row_end
ils_file.file_id = 'Instrument Line Shape parameters for sounding posistion %d' % sounding_id
ils_file.labels = labels
ils_file.header['function_type'] = 'TABLE'
ils_file.header['interpolation'] = '100 100 100'
ils_file.header['num_ils_parameters'] = num_ils_parameters
ils_file.header['num_ils_wndepend'] = num_ils_wndepend
print 'Writing to %s' % output_filename
ils_file.write(output_filename, verbose=True)
示例4: write_albedo_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_albedo_file(output_file, albedo_data, header_values=None):
albedo_obj = OCO_Matrix()
if header_values != None:
albedo_obj.header.update(header_values)
albedo_obj.header['center_wavelengths'] = ' '.join([str(wl) for wl in ALBEDO_CENTER_WAVELENGTHS])
albedo_obj.labels = [ ALBEDO_COL_TMPL % (idx+1) for idx in range(albedo_data.shape[1]) ]
albedo_obj.data = albedo_data
albedo_obj.file_id = 'Surface albedo data'
albedo_obj.write(output_file)
示例5: get_data_object
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def get_data_object(data_filename):
# Try to load data using OCO_Matrix class
try:
data_obj = OCO_Matrix(data_filename)
return data_obj
except:
pass
# Now load file as tabled data
table_file_obj = open(data_filename, 'r')
file_lines = table_file_obj.readlines()
table_file_obj.close()
# Seperate each line by spaces. Keep count of maximum
# number of columns seen for when file is added so we can
# know how to size the resultng matrix
max_cols = 0
file_rows = []
for line in file_lines:
if line.find('#') < 0 and len(line.strip()) != 0:
line_cols = line.strip().split()
file_rows.append(line_cols)
max_cols = max(max_cols, len(line_cols))
# data_mat = numpy.zeros((len(file_rows), max_cols), dtype=float)
data_mat = numpy.zeros((len(file_rows), max_cols), dtype=numpy.chararray)
for row_idx in range(len(file_rows)):
num_cols = len(file_rows[row_idx])
for col_idx in range(num_cols):
col_value = file_rows[row_idx][col_idx]
data_mat[row_idx][col_idx] = col_value
# try:
# data_mat[row_idx][col_idx] = float(col_value)
# except:
# data_mat[row_idx][col_idx] = fill_value
# Create label names based on filename and index or else can
# not select specific columns
label_base = os.path.basename(data_filename)
label_base = label_base[0:label_base.rfind('.')] # Remove extension
data_labels = []
for col_idx in range(max_cols):
data_labels.append( get_column_format(max_cols) % (label_base, col_idx) )
# Save data into OCO Matrix object
data_obj = OCO_Matrix()
data_obj.dims = [len(file_rows), max_cols]
data_obj.labels = data_labels
data_obj.data = data_mat
return data_obj
示例6: write_total_aod_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_total_aod_file(log_sounding_dict, aod_filename):
# make aerosol_od_<sounding_id>.dat
aod_fileobj = OCO_Matrix()
aod_fileobj.file_id = 'True aerosol optical depth from orbit simulator'
aod_fileobj.labels = AOD_LABEL_NAMES
aod_fileobj.data = numpy.zeros((1,len(AOD_COL_NAMES)), dtype=float)
for out_idx, aer_col_name in enumerate(AOD_COL_NAMES):
aod_fileobj.data[0,out_idx] = log_sounding_dict[aer_col_name]
aod_fileobj.write(aod_filename)
示例7: write_psurf_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_psurf_file(psurf, out_filename):
out_psurf_data = numpy.zeros((1, 1), dtype=float)
out_psurf_data[0, 0] = psurf
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True surface pressure from orbit simulator'
out_mat_obj.data = out_psurf_data
out_mat_obj.labels = ['PSURF']
out_mat_obj.units = ['Pa']
out_mat_obj.write(out_filename)
示例8: Process_File
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def Process_File(source, destination, fileKeywords, moduleSections, valuesDict, mapDict):
if len(moduleSections) > 1:
raise RuntimeError("Only one input file config set per file")
if str(source) == str(destination):
raise ValueError("source and dest filenames must be different. will not overwrite source file")
spectrum_file = Apply_Template(moduleSections[0].Get_Keyword_Value("spectrum_file"), valuesDict, mapDict=mapDict)
if type(source) is str and not os.path.exists(source):
raise IOError("Runlog file %s does not exist" % source)
base_spec_name = os.path.basename(spectrum_file)
# Use grep because its faster than doing it outself
matched_line = None
if type(source) == str:
grep_cmd = "grep -E " + base_spec_name + " " + source
matched_line = os.popen(grep_cmd).readline()
elif hasattr(source, "read"):
for curr_line in source.readlines():
if re.search(base_spec_name, curr_line):
matched_line = curr_line
break
else:
raise Exception("Unsupported object: %s" % source)
if matched_line == None or len(matched_line) == 0:
raise IOError("Could not find spectrum name: %s in run log file: %s" % (base_spec_name, source))
try:
matched_columns = matched_line.split()
psurf_val = float(matched_columns[pout_col_idx]) * convert_factor
except:
raise ValueError(
'Failed to parse psurf value from: "%s" from runlog line: %s'
% (matched_columns[pout_col_idx], matched_line)
)
out_obj = OCO_Matrix()
out_obj.data = numpy.zeros((1, 1), dtype=float)
out_obj.data[0, 0] = psurf_val
out_obj.file_id = "psurf value extracted for spectrum named: %s from runlog file: %s" % (base_spec_name, source)
out_obj.labels = ["PSURF"]
out_obj.write(destination)
示例9: write_windspeed_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_windspeed_file(sounding_data, out_filename):
out_windspeed_data = numpy.zeros((1, 1), dtype=float)
ws_data = sounding_data['surface_windspeed']
if hasattr(ws_data, '__iter__'):
out_windspeed_data[0, 0] = ws_data[0]
else:
out_windspeed_data[0, 0] = ws_data
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True windspeed from orbit simulator'
out_mat_obj.data = out_windspeed_data
out_mat_obj.labels = ['WINDSPEED']
out_mat_obj.units = ['m/s']
out_mat_obj.write(out_filename)
示例10: write_windspeed_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_windspeed_file(sounding_id, apriori_out_dir, ws_value, header_values=None, windspeed_f=False):
windspeed_obj = OCO_Matrix()
windspeed_obj.data = numpy.zeros((1,1), dtype=float)
windspeed_obj.data[:,:] = ws_value
windspeed_obj.labels = WINDSPEED_LABELS
windspeed_obj.units = WINDSPEED_UNITS
windspeed_obj.file_id = 'Windspeed for sounding: %s' % sounding_id
if header_values != None:
windspeed_obj.header.update(header_values)
if windspeed_f:
windspeed_obj.header['Windspeed_F'] = True
windspeed_obj.write(WINDSPEED_F_FILE_TMPL % (apriori_out_dir, sounding_id))
else:
windspeed_obj.write(WINDSPEED_FILE_TMPL % (apriori_out_dir, sounding_id))
示例11: create_simple_cov
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def create_simple_cov(input_file, output_file, scaling, columns):
logger = logging.getLogger(os.path.basename(__file__))
# Load source file
src_obj = OCO_Matrix(input_file)
scaling = [float(v) for v in scaling.split(',')]
if len(scaling) < src_obj.dims[0]:
last_val = scaling[len(scaling)-1]
[ scaling.append(last_val) for nada in range(src_obj.dims[0] - len(scaling)) ]
try:
columns = index_range_list(columns, max_value=src_obj.dims[1])
except:
if not type(columns) is ListType:
col_name_list = [columns]
else:
col_name_list = columns
columns = []
for curr_name in col_name_list:
if curr_name.lower() not in src_obj.labels_lower:
raise IOError('Column named %s not found in file: %s' % (curr_name, input_file))
columns.append( src_obj.labels_lower.index(curr_name.lower()) )
logger.info('cols = ', columns)
num_diags = len(columns) * src_obj.dims[0]
logger.info('num_diags = ', num_diags)
dst_data = numpy.zeros((num_diags, num_diags), dtype=float)
diag_index = 0
for col_index in columns:
for row_index in range(src_obj.dims[0]):
#print '%d, %d => %d, %d' % (row_index, col_index, diag_index, diag_index)
dst_data[diag_index, diag_index] = (src_obj.data[row_index, col_index] * scaling[row_index])**2
diag_index += 1
logger.info('Writing: %s' % input_file)
src_obj.file_id = 'Simple Covariance Created from "%s", scaling: "%s"' % (input_file, ', '.join([str(sc) for sc in scaling]))
src_obj.labels = []
src_obj.data = dst_data
src_obj.units = []
src_obj.write(output_file, auto_size_cols=False, verbose=True)
示例12: write_radcnv_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_radcnv_file(output_filename, column_names, sheet, input_rows, input_cols, scaling=1.0):
file_obj = OCO_Matrix()
file_obj.labels = column_names
file_obj.file_id = FILE_ID
file_obj.data = numpy.zeros((len(input_rows), len(input_cols)), dtype=numpy.chararray)
out_row_idx = 0
for in_row_idx, out_row_idx in zip(input_rows, range(len(input_rows)) ):
for in_col_idx, out_col_idx in zip(input_cols, range(len(input_cols)) ):
cell_data = get_cell_data(sheet, in_row_idx, in_col_idx)
if cell_data != None and column_names[out_col_idx] != WAVENUMBER_COLUMN_NAME:
try:
cell_data *= scaling
except TypeError as e:
raise TypeError('%s: cell_data = "%s", scaling = "%s" at row: %d column %d' % (e, cell_data, scaling, in_row_idx, in_col_idx))
file_obj.data[out_row_idx, out_col_idx] = cell_data
print 'Writing output filename: %s' % output_filename
file_obj.write(output_filename)
示例13: write_spectra_files
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_spectra_files(output_dir, ids, data):
for curr_id, curr_data in zip(ids, data):
out_filename = '%s/%s.dat' % (output_dir, curr_id)
used_data = []
out_obj = OCO_Matrix()
out_obj.labels = FILE_LABELS
out_obj.units = FILE_UNITS
out_obj.file_id = FILE_ID_TMPL % (curr_id)
out_obj.data = numpy.zeros((curr_data['Num_Points'], len(FILE_LABELS)), dtype=float)
used_data.append('Num_Points')
for column_idx, column_name in enumerate(FILE_LABELS):
if curr_data.has_key(column_name):
out_obj.data[:, column_idx] = curr_data[column_name]
used_data.append(column_name)
header_dict = copy.copy(curr_data)
header_dict.update(HEADER_FILL_VALUES)
for data_name, data_values in header_dict.items():
if data_name in used_data:
continue
out_name = translate_header_name(data_name)
try:
if len(data_values.shape) == 0:
out_obj.header[out_name] = str(data_values)
else:
out_obj.header[out_name] = ' '.join([ str(item) for item in iter(data_values)])
except:
try:
out_obj.header[out_name] = str(data_values)
except:
print >>sys.stderr, 'Barfed on parsing %s with values: %s for header of file %s' % (data_name, data_values, out_filename)
print 'Writing: %s' % out_filename
out_obj.write(out_filename)
示例14: write_atmosphere_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_atmosphere_file(sounding_data, out_filename, pressure_in, pressure_out, profile_mass_densities=False):
gas_names = sounding_data['gas_names']
num_cols = len(gas_names) + 2
out_atm_data = numpy.zeros((len(pressure_out), num_cols), dtype=float)
out_atm_data[:, 0] = resample_profile(pressure_in, pressure_in, pressure_out, log_data=True, extrapolate=True)
out_atm_data[:, 1] = resample_profile(pressure_in, sounding_data['temperature'][LEV_BEG:], pressure_out, log_data=False, extrapolate=True)
for gas_idx in range(len(gas_names)):
curr_gas = sounding_data['gas_names'][gas_idx]
# Ensure data is a numpy array
source_data = numpy.array(sounding_data['gas_mix_ratio'][curr_gas])
if profile_mass_densities and curr_gas.find("AIR") != 0:
# Convert H2O from mol/m^2 to VMR
# The profiles in the Simulation structure are layer mass densities in mol/m^2
# They are converted to volume mixing ratios by dividing by the mass density of dry air, also in mol/m^2
source_data = source_data/sounding_data['gas_mix_ratio'][DRY_AIR_NAME]
elif curr_gas == 'H2O':
# Convert H2O from specific humidity%
source_data = source_data/(1.0 - source_data)/H2O_CONVERT_EPSILON
out_atm_data[:, gas_idx+2] = resample_profile(pressure_in, source_data[LEV_BEG:], pressure_out, log_data=True, extrapolate=False)
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True atmospheric profiles from orbit simulator'
out_mat_obj.data = out_atm_data
out_mat_obj.labels = ['Pressure', 'T'] + list(gas_names)
out_mat_obj.units = ['Pa', 'K'] + [ 'VMR' for x in range(len(gas_names)) ]
out_mat_obj.write(out_filename)
return out_atm_data
示例15: write_aerosol_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import labels [as 別名]
def write_aerosol_file(sounding_data, out_filename, pressure_in, pressure_out):
aer_names = sounding_data['aerosol_names']
# If there are no aerosols for this sounding then just make an empty list
if aer_names == None:
aer_names = []
num_cols = len(aer_names) + 1
out_aer_data = numpy.zeros((len(pressure_out), num_cols), dtype=float)
out_aer_data[:, 0] = resample_profile(pressure_in, pressure_in, pressure_out, log_data=True, extrapolate=True)
aer_src_data = numpy.zeros((len(pressure_in), len(aer_names)), dtype=float)
for aer_idx in range(len(aer_names)):
curr_aer = sounding_data['aerosol_names'][aer_idx]
for lev_idx in range(len(pressure_in)):
aer_src_data[lev_idx, aer_idx] = abs(sounding_data['aerosol_extinction'][curr_aer][LEV_BEG+lev_idx])
if tuple(pressure_in) == tuple(pressure_out):
aer_dst_data = aer_src_data.transpose()
else:
aer_dst_data = resample_aerosol(pressure_in, aer_src_data, pressure_out, debug=True)
for aer_idx in range(len(aer_names)):
out_aer_data[:, aer_idx+1] = aer_dst_data[aer_idx, :]
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True aerosol profiles from orbit simulator'
out_mat_obj.data = out_aer_data
out_mat_obj.labels = ['Pressure'] + list(aer_names)
out_mat_obj.header['Retrieval_Mode'] = 'linear'
out_mat_obj.units = ['Pa'] + [ '1/Pa' for x in range(len(aer_names)) ]
out_mat_obj.write(out_filename)