本文整理匯總了Python中OCO_Matrix.OCO_Matrix.data方法的典型用法代碼示例。如果您正苦於以下問題:Python OCO_Matrix.data方法的具體用法?Python OCO_Matrix.data怎麽用?Python OCO_Matrix.data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.data方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scale_cov_by_corr
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def scale_cov_by_corr(input_file, output_file, scale_factor):
# Load existing file
matrix_obj = OCO_Matrix(input_file)
rows = range(matrix_obj.dims[0])
cols = range(matrix_obj.dims[1])
data_new = numpy.zeros((matrix_obj.dims[0], matrix_obj.dims[1]), dtype=float)
for row_idx in rows:
for col_idx in cols:
rho_old = matrix_obj.data[row_idx, col_idx] / \
(math.sqrt(matrix_obj.data[row_idx, row_idx]) * math.sqrt(matrix_obj.data[col_idx, col_idx]))
if rho_old < 0.0:
sign = -1.0
else:
sign = 1.0
fact_new = float(scale_factor) * (1.0 - abs(rho_old))
if abs(rho_old) < 1e-40:
rho_new = 0.0
elif fact_new > 1.0:
rho_new = 0.0
else:
rho_new = 1.0 - fact_new
data_new[row_idx, col_idx] = sign * rho_new * \
(math.sqrt(matrix_obj.data[row_idx, row_idx]) * math.sqrt(matrix_obj.data[col_idx, col_idx]))
matrix_obj.data = data_new
matrix_obj.write(output_file)
示例2: average_profiles
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def average_profiles(input_file_list, output_file):
input_file_obj = open(input_file_list)
first_file = input_file_obj.readline()
input_file_obj.close()
first_obj = OCO_Matrix(first_file.strip())
dst_data = zeros((first_obj.dims[0], first_obj.dims[1]), dtype=float)
pres_col = first_obj.labels_lower.index("pressure")
dst_data[:, pres_col] = first_obj.data[:, pres_col]
input_file_obj = open(input_file_list)
count = 0
for curr_atm_file in input_file_obj.readlines():
curr_atm_file = curr_atm_file.strip()
# Load existing file
print "Loading %s" % curr_atm_file
file_obj = OCO_Matrix(curr_atm_file)
for col in range(file_obj.dims[1]):
if col != pres_col:
dst_data[:, col] += file_obj.data[:, col]
count += 1
for col in range(dst_data.shape[1]):
if col != pres_col:
dst_data[:, col] /= count
first_obj.data = dst_data
first_obj.write(output_file)
示例3: create_mean_psurf
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def create_mean_psurf(runlog_file, psurf_file):
print 'runlog_file = ', runlog_file
print 'psurf_file = ', psurf_file
runlog_fobj = open(runlog_file, "r")
header_cols = runlog_fobj.readline().split()
pout_col = header_cols.index('pout')
pouts = []
for runlog_line in runlog_fobj.readlines():
runlog_parts = runlog_line.split()
pouts.append(float(runlog_parts[pout_col]))
runlog_fobj.close()
avg_psurf = mean(pouts) * 1e2
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = "Mean surface pressure from runlog file: %s" % runlog_file
out_mat_obj.labels = ['LEVEL', 'PSURF']
out_mat_obj.data = ones((1, 2), dtype=float)
out_mat_obj.data[0, 1] = avg_psurf
out_mat_obj.write(psurf_file)
示例4: write_xco2_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_xco2_file(log_sounding_dict, xco2_filename):
xco2_fileobj = OCO_Matrix()
xco2_fileobj.file_id = 'True xco2 from orbit simulator'
xco2_fileobj.labels = [XCO2_LABEL_NAME]
xco2_fileobj.data = numpy.zeros((1,1), dtype=float)
xco2_fileobj.data[0,0] = log_sounding_dict[XCO2_COL_NAME]
xco2_fileobj.write(xco2_filename)
示例5: remove_bad_data_all
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def remove_bad_data_all(input_file, output_file, check_col, check_val):
# Load existing file
file_obj = OCO_Matrix(input_file)
num_rows = file_obj.dims[0]
if check_col.isdigit():
check_col = int(check_col)
else:
check_col = file_obj.labels_lower.index(check_col.lower())
good_mask = []
for row_idx in range(num_rows):
if not re.search(str(check_val).lower(), str(file_obj.data[row_idx, check_col]).lower()):
good_mask.append(row_idx)
cleaned_data = numpy.zeros((len(good_mask), file_obj.dims[1]), dtype=float)
new_data_idx = 0
for good_row in good_mask:
cleaned_data[new_data_idx, :] = file_obj.data[good_row, :]
new_data_idx += 1
file_obj.data = cleaned_data
file_obj.write(output_file)
示例6: resample_levels
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def resample_levels(input_file, output_file, resample_to, val_extrapolate=False):
# Load existing file
file_obj = OCO_Matrix(input_file)
try:
src_pres_col = file_obj.labels_lower.index("pressure")
except:
raise IOError('Could not find pressure column in input file: "%s"' % input_file)
try:
src_temp_col = file_obj.labels_lower.index("t")
except:
src_temp_col = -1
## Do nothing except write output file if input and desired levels already match
if resample_to.isdigit() and file_obj.dims[0] == int(resample_to):
file_obj.write(output_file)
return
elif resample_to.isdigit():
resample_to = int(resample_to)
dst_data = numpy.zeros((resample_to, file_obj.dims[1]), dtype=float)
elif os.path.exists(resample_to):
dest_pressure_file = resample_to
pres_obj = OCO_Matrix(dest_pressure_file)
dst_pres_col = pres_obj.labels_lower.index("pressure")
dst_data = numpy.zeros((pres_obj.dims[0], file_obj.dims[1]), dtype=float)
resample_to = pres_obj.data[:, dst_pres_col]
else:
raise ValueError('Resample to argument "%s" is neither an integer nor a file that exists' % resample_to)
for col_idx in range(file_obj.dims[1]):
# Interpolate all but temperature in log space
if col_idx == src_temp_col:
log_data=False
else:
log_data=True
if col_idx == src_pres_col:
do_extrapolate = True
else:
do_extrapolate = val_extrapolate
dst_data[:, col_idx] = resample_profile( file_obj.data[:, src_pres_col],
file_obj.data[:, col_idx],
resample_to,
log_data=log_data,
extrapolate=do_extrapolate )
file_obj.data = dst_data
file_obj.write(output_file)
示例7: extract_ils_from_hdf
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def extract_ils_from_hdf(hdf_file, output_dir, reverse=False):
print 'Opening HDF file: %s' % hdf_file
with contextlib.closing(h5py.File(hdf_file, 'r')) as hdf_obj:
reported_soundings = []
for snd_idx, rep_val in enumerate(hdf_obj['Metadata']['ReportedSoundings']):
if rep_val > 0:
reported_soundings.append( snd_idx + 1 )
ils_delta_lambda = hdf_obj['InstrumentHeader']['ils_delta_lambda']
ils_relative_response = hdf_obj['InstrumentHeader']['ils_relative_response']
num_bands = ils_delta_lambda.shape[0]
num_ils_parameters = ils_delta_lambda.shape[2]
num_ils_wndepend = ils_delta_lambda.shape[3]
labels = [ 'ILS_PIXELS' ]
for band_num in range(1, num_bands+1):
labels.append('ILS_DELTA_LAMBDA_%d' % band_num)
labels.append('ILS_RESPONSE_%d' % band_num)
for snd_idx, sounding_id in enumerate(reported_soundings):
output_filename = os.path.join(output_dir, 'ils_%d.dat' % sounding_id)
print 'Extracting data for sounding %d into %s' % (sounding_id, output_filename)
ils_file = OCO_Matrix()
ils_file.data = numpy.zeros((num_ils_parameters * num_ils_wndepend, num_bands*2+1), dtype=float)
row_beg = 0
for color_index in range(num_ils_parameters):
print 'Extracting color %d' % (color_index+1)
row_end = row_beg+num_ils_wndepend
ils_file.data[row_beg:row_end, 0] = color_index + 1
for band_idx, col_idx in zip(range(num_bands), range(1,1+2*num_bands,2)):
ils_file.data[row_beg:row_end, col_idx] = ils_delta_lambda[band_idx, snd_idx, color_index, :]
if reverse:
ils_file.data[row_beg:row_end, col_idx+1] = ils_relative_response[band_idx, snd_idx, color_index, :][::-1]
else:
ils_file.data[row_beg:row_end, col_idx+1] = ils_relative_response[band_idx, snd_idx, color_index, :]
row_beg = row_end
ils_file.file_id = 'Instrument Line Shape parameters for sounding posistion %d' % sounding_id
ils_file.labels = labels
ils_file.header['function_type'] = 'TABLE'
ils_file.header['interpolation'] = '100 100 100'
ils_file.header['num_ils_parameters'] = num_ils_parameters
ils_file.header['num_ils_wndepend'] = num_ils_wndepend
print 'Writing to %s' % output_filename
ils_file.write(output_filename, verbose=True)
示例8: write_albedo_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_albedo_file(output_file, albedo_data, header_values=None):
albedo_obj = OCO_Matrix()
if header_values != None:
albedo_obj.header.update(header_values)
albedo_obj.header['center_wavelengths'] = ' '.join([str(wl) for wl in ALBEDO_CENTER_WAVELENGTHS])
albedo_obj.labels = [ ALBEDO_COL_TMPL % (idx+1) for idx in range(albedo_data.shape[1]) ]
albedo_obj.data = albedo_data
albedo_obj.file_id = 'Surface albedo data'
albedo_obj.write(output_file)
示例9: get_data_object
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def get_data_object(data_filename):
# Try to load data using OCO_Matrix class
try:
data_obj = OCO_Matrix(data_filename)
return data_obj
except:
pass
# Now load file as tabled data
table_file_obj = open(data_filename, 'r')
file_lines = table_file_obj.readlines()
table_file_obj.close()
# Seperate each line by spaces. Keep count of maximum
# number of columns seen for when file is added so we can
# know how to size the resultng matrix
max_cols = 0
file_rows = []
for line in file_lines:
if line.find('#') < 0 and len(line.strip()) != 0:
line_cols = line.strip().split()
file_rows.append(line_cols)
max_cols = max(max_cols, len(line_cols))
# data_mat = numpy.zeros((len(file_rows), max_cols), dtype=float)
data_mat = numpy.zeros((len(file_rows), max_cols), dtype=numpy.chararray)
for row_idx in range(len(file_rows)):
num_cols = len(file_rows[row_idx])
for col_idx in range(num_cols):
col_value = file_rows[row_idx][col_idx]
data_mat[row_idx][col_idx] = col_value
# try:
# data_mat[row_idx][col_idx] = float(col_value)
# except:
# data_mat[row_idx][col_idx] = fill_value
# Create label names based on filename and index or else can
# not select specific columns
label_base = os.path.basename(data_filename)
label_base = label_base[0:label_base.rfind('.')] # Remove extension
data_labels = []
for col_idx in range(max_cols):
data_labels.append( get_column_format(max_cols) % (label_base, col_idx) )
# Save data into OCO Matrix object
data_obj = OCO_Matrix()
data_obj.dims = [len(file_rows), max_cols]
data_obj.labels = data_labels
data_obj.data = data_mat
return data_obj
示例10: write_total_aod_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_total_aod_file(log_sounding_dict, aod_filename):
# make aerosol_od_<sounding_id>.dat
aod_fileobj = OCO_Matrix()
aod_fileobj.file_id = 'True aerosol optical depth from orbit simulator'
aod_fileobj.labels = AOD_LABEL_NAMES
aod_fileobj.data = numpy.zeros((1,len(AOD_COL_NAMES)), dtype=float)
for out_idx, aer_col_name in enumerate(AOD_COL_NAMES):
aod_fileobj.data[0,out_idx] = log_sounding_dict[aer_col_name]
aod_fileobj.write(aod_filename)
示例11: write_psurf_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_psurf_file(psurf, out_filename):
out_psurf_data = numpy.zeros((1, 1), dtype=float)
out_psurf_data[0, 0] = psurf
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True surface pressure from orbit simulator'
out_mat_obj.data = out_psurf_data
out_mat_obj.labels = ['PSURF']
out_mat_obj.units = ['Pa']
out_mat_obj.write(out_filename)
示例12: Process_File
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def Process_File(source, destination, fileKeywords, moduleSections, valuesDict, mapDict):
if len(moduleSections) > 1:
raise RuntimeError("Only one input file config set per file")
if str(source) == str(destination):
raise ValueError("source and dest filenames must be different. will not overwrite source file")
spectrum_file = Apply_Template(moduleSections[0].Get_Keyword_Value("spectrum_file"), valuesDict, mapDict=mapDict)
if type(source) is str and not os.path.exists(source):
raise IOError("Runlog file %s does not exist" % source)
base_spec_name = os.path.basename(spectrum_file)
# Use grep because its faster than doing it outself
matched_line = None
if type(source) == str:
grep_cmd = "grep -E " + base_spec_name + " " + source
matched_line = os.popen(grep_cmd).readline()
elif hasattr(source, "read"):
for curr_line in source.readlines():
if re.search(base_spec_name, curr_line):
matched_line = curr_line
break
else:
raise Exception("Unsupported object: %s" % source)
if matched_line == None or len(matched_line) == 0:
raise IOError("Could not find spectrum name: %s in run log file: %s" % (base_spec_name, source))
try:
matched_columns = matched_line.split()
psurf_val = float(matched_columns[pout_col_idx]) * convert_factor
except:
raise ValueError(
'Failed to parse psurf value from: "%s" from runlog line: %s'
% (matched_columns[pout_col_idx], matched_line)
)
out_obj = OCO_Matrix()
out_obj.data = numpy.zeros((1, 1), dtype=float)
out_obj.data[0, 0] = psurf_val
out_obj.file_id = "psurf value extracted for spectrum named: %s from runlog file: %s" % (base_spec_name, source)
out_obj.labels = ["PSURF"]
out_obj.write(destination)
示例13: make_diag_only_cov
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def make_diag_only_cov(input_file, output_file):
# Load existing file
matrix_obj = OCO_Matrix(input_file)
rows = range(matrix_obj.dims[0])
cols = range(matrix_obj.dims[1])
data_new = numpy.zeros((matrix_obj.dims[0], matrix_obj.dims[1]), dtype=float)
for row_idx in rows:
for col_idx in cols:
if row_idx == col_idx:
data_new[row_idx, col_idx] = matrix_obj.data[row_idx, col_idx]
matrix_obj.data = data_new
matrix_obj.write(output_file)
示例14: write_windspeed_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_windspeed_file(sounding_data, out_filename):
out_windspeed_data = numpy.zeros((1, 1), dtype=float)
ws_data = sounding_data['surface_windspeed']
if hasattr(ws_data, '__iter__'):
out_windspeed_data[0, 0] = ws_data[0]
else:
out_windspeed_data[0, 0] = ws_data
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = 'True windspeed from orbit simulator'
out_mat_obj.data = out_windspeed_data
out_mat_obj.labels = ['WINDSPEED']
out_mat_obj.units = ['m/s']
out_mat_obj.write(out_filename)
示例15: write_windspeed_file
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import data [as 別名]
def write_windspeed_file(sounding_id, apriori_out_dir, ws_value, header_values=None, windspeed_f=False):
windspeed_obj = OCO_Matrix()
windspeed_obj.data = numpy.zeros((1,1), dtype=float)
windspeed_obj.data[:,:] = ws_value
windspeed_obj.labels = WINDSPEED_LABELS
windspeed_obj.units = WINDSPEED_UNITS
windspeed_obj.file_id = 'Windspeed for sounding: %s' % sounding_id
if header_values != None:
windspeed_obj.header.update(header_values)
if windspeed_f:
windspeed_obj.header['Windspeed_F'] = True
windspeed_obj.write(WINDSPEED_F_FILE_TMPL % (apriori_out_dir, sounding_id))
else:
windspeed_obj.write(WINDSPEED_FILE_TMPL % (apriori_out_dir, sounding_id))