本文整理匯總了Python中OCO_Matrix.OCO_Matrix.format_col方法的典型用法代碼示例。如果您正苦於以下問題:Python OCO_Matrix.format_col方法的具體用法?Python OCO_Matrix.format_col怎麽用?Python OCO_Matrix.format_col使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.format_col方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extract_run_data
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import format_col [as 別名]
#.........這裏部分代碼省略.........
read_options = {}
# Find read options
for curr_item_desc in extract_items:
if type(curr_item_desc) == dict:
read_options = curr_item_desc
extract_obj = self.get_cached_file(curr_dir, extract_file, **read_options)
if extract_obj != None:
logger.debug('... %s' % extract_file)
for curr_item_desc in extract_items:
if type(curr_item_desc) == int:
insert_index = curr_item_desc
elif type(curr_item_desc) == dict:
# Ignore, already read in other loop
pass
elif type(curr_item_desc) == tuple:
try:
item_results = curr_item_desc[0](self, extract_obj, curr_dir, *curr_item_desc[1:])
except:
logger.error('Error calling routine: %s with values: %s' % (curr_item_desc[0], curr_item_desc[1:]))
logger.error(''.join(traceback.format_exception(*sys.exc_info(), limit=2)))
raise
# If nothing returned loop around
if item_results == None:
continue
for item_name, item_value in item_results:
if item_name not in column_names:
# Grow so insert indexes are meaningful
if insert_index > len(column_names)-1:
column_names.extend([None] * (insert_index - len(column_names)+1))
# If column name index is empty place item name there otherwise
# after it
if column_names[insert_index] == None:
column_names[insert_index] = item_name
else:
column_names.insert(insert_index+1, item_name)
data_dict[curr_name][item_name] = item_value
# Increment so that items from current item results go in order
insert_index += 1
else:
raise Exception('Unknown item type: %s for extract file: %s' % (type(curr_item_desc), extract_file))
else:
logger.debug('... %s (skipped, not present)' % extract_file)
# Check validity of computed values
for check_items, check_str in PER_RUN_CHECKS:
check_count = 0
for curr_item in check_items:
if curr_item in data_dict[curr_name].keys():
check_count += 1
# Ignore if none of the required items are not in the dictionary for item
if check_count == 0:
continue
elif check_count != len(check_items):
err_msg = 'Not all required check items: "%s" present in dictionary for run_dir: %s' % (check_items, curr_dir)
logger.error(err_msg)
raise Exception(err_msg)
else:
check_eval = check_str.format(**data_dict[curr_name])
if not eval( check_eval ):
err_msg = 'Check failed for run dir: %s. Check string: "%s" evaluated as: "%s"' % (curr_dir, check_str, check_eval)
logger.error(err_msg)
raise Exception(err_msg)
# Cleanup empty values from column names:
while True:
try:
column_names.remove(None)
except ValueError:
break
# Remove any data that was not in the list of items
# we were told to process, in case old data is present
# in a file where the run dir list has been updated
for data_name in data_dict.keys():
if data_name not in seen_names:
del data_dict[data_name]
# Convert extracted data to matrix and write
file_obj = OCO_Matrix()
if file_id != None:
file_obj.file_id = file_id
file_obj.data = self.convert_data_to_matrix(column_names, data_dict)
file_obj.labels = column_names
file_obj.format_col = [True] * len(column_names)
file_obj.format_col[ column_names.index(RUN_COLUMN_NAME) ] = False
logger.info('Writing: %s' % output_filename)
file_obj.write(output_filename, auto_size_cols=True)
示例2: compute_runtimes
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import format_col [as 別名]
#.........這裏部分代碼省略.........
if( line.find("max_pf_mom") >= 0 ):
line_parts = line.split()
num_pf_mom = int(line_parts[3])
continue
if rt_line_count > 0:
node_avg = total_runtime / rt_line_count
else:
node_avg = 0.0
if(rt_line_count > 1):
n_count = float(rt_line_count)
node_var = (1 / (n_count-1)) * sum_sq_runtime - (n_count / (n_count-1)) * node_avg*node_avg
else:
node_var = 0.0
# Collect additonal info
single_scat = 'false'
polarization = 'false'
sv_size = 0
if additional_cols:
# Collect oco_l2.run info
run_file = test_data_loc + "/" + RUNFILE_BASE
if os.path.exists(run_file):
run_f = open(run_file, 'r')
run_lines = run_f.readlines()
run_f.close()
for line in run_lines:
if( line.find("single_scatter_correction") >= 0 ):
line_parts = line.split()
single_scat = line_parts[2].lower()
if( line.find("polarization") >= 0 ):
line_parts = line.split()
polarization = line_parts[2].lower()
# Collect info from summary.dat file
summary_file = test_data_loc + "/" + SUMMARY_BASE
if os.path.exists(summary_file):
summ_f = open(summary_file, 'r')
summ_lines = summ_f.readlines()
summ_f.close()
for line in summ_lines:
if( line.find("Total") >= 0 ):
line_parts = line.split()
sv_size = int(line_parts[2])
# Save data now in individual variables into matricies
default_row = [tc_name, total_runtime, iter_count]
for col_idx in range(len(default_row)):
default_data[row_idx][col_idx] = default_row[col_idx]
parallel_row = [rt_line_count, node_avg, node_var, min_runtime, max_runtime]
for col_idx in range(len(parallel_row)):
parallel_data[row_idx][col_idx] = parallel_row[col_idx]
addl_row = [single_scat, polarization, num_pf_mom, sv_size]
for col_idx in range(len(addl_row)):
additional_data[row_idx][col_idx] = addl_row[col_idx]
row_idx += 1
# Put together the final output label list
file_labels = copy.copy(DEFAULT_LABELS)
if parallel_cols:
file_labels += PARALLEL_LABELS
if additional_cols:
file_labels += ADDITIONAL_LABELS
# Create a new data matrix for concatenated data
file_data = numpy.zeros((len(run_dirs), len(file_labels)), dtype=numpy.chararray)
# Concatenate various types of data
for row_idx in range(len(run_dirs)):
dflt_beg = 0
dflt_end = len(DEFAULT_LABELS)
file_data[row_idx][dflt_beg:dflt_end] = default_data[row_idx][:]
par_end = dflt_end
if parallel_cols:
par_beg = dflt_end
par_end = par_beg + len(PARALLEL_LABELS)
file_data[row_idx][par_beg:par_end] = parallel_data[row_idx][:]
if additional_cols:
addl_beg = par_end
addl_end = addl_beg + len(ADDITIONAL_LABELS)
file_data[row_idx][addl_beg:addl_end] = additional_data[row_idx][:]
out_mat_obj = OCO_Matrix()
out_mat_obj.file_id = "Testset Timing Results"
out_mat_obj.labels = file_labels
out_mat_obj.format_col = [False]
out_mat_obj.data = file_data
out_mat_obj.write(output_data_file, auto_size_cols=True)