本文整理匯總了Python中OCO_Matrix.OCO_Matrix.dims方法的典型用法代碼示例。如果您正苦於以下問題:Python OCO_Matrix.dims方法的具體用法?Python OCO_Matrix.dims怎麽用?Python OCO_Matrix.dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.dims方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_data_object
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import dims [as 別名]
def get_data_object(data_filename):
# Try to load data using OCO_Matrix class
try:
data_obj = OCO_Matrix(data_filename)
return data_obj
except:
pass
# Now load file as tabled data
table_file_obj = open(data_filename, 'r')
file_lines = table_file_obj.readlines()
table_file_obj.close()
# Seperate each line by spaces. Keep count of maximum
# number of columns seen for when file is added so we can
# know how to size the resultng matrix
max_cols = 0
file_rows = []
for line in file_lines:
if line.find('#') < 0 and len(line.strip()) != 0:
line_cols = line.strip().split()
file_rows.append(line_cols)
max_cols = max(max_cols, len(line_cols))
# data_mat = numpy.zeros((len(file_rows), max_cols), dtype=float)
data_mat = numpy.zeros((len(file_rows), max_cols), dtype=numpy.chararray)
for row_idx in range(len(file_rows)):
num_cols = len(file_rows[row_idx])
for col_idx in range(num_cols):
col_value = file_rows[row_idx][col_idx]
data_mat[row_idx][col_idx] = col_value
# try:
# data_mat[row_idx][col_idx] = float(col_value)
# except:
# data_mat[row_idx][col_idx] = fill_value
# Create label names based on filename and index or else can
# not select specific columns
label_base = os.path.basename(data_filename)
label_base = label_base[0:label_base.rfind('.')] # Remove extension
data_labels = []
for col_idx in range(max_cols):
data_labels.append( get_column_format(max_cols) % (label_base, col_idx) )
# Save data into OCO Matrix object
data_obj = OCO_Matrix()
data_obj.dims = [len(file_rows), max_cols]
data_obj.labels = data_labels
data_obj.data = data_mat
return data_obj
示例2: remove_bad_data_last
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import dims [as 別名]
def remove_bad_data_last(input_file, output_file, check_col, check_val):
# Load existing file
file_obj = OCO_Matrix(input_file)
num_rows = file_obj.dims[0]
if check_col.isdigit():
check_col = int(check_col)
else:
check_col = file_obj.labels_lower.index(check_col.lower())
last_good_index = -1
for row_idx in range(num_rows-1, 1, -1):
if not re.search(str(check_val).lower(), str(file_obj.data[row_idx, check_col]).lower()):
last_good_index = row_idx
break
print "Last good index = ", last_good_index
file_obj.dims = [last_good_index+1, file_obj.dims[1]]
file_obj.write(output_file, use_set_dims=True, auto_size_cols=False)
示例3: standalone_main
# 需要導入模塊: from OCO_Matrix import OCO_Matrix [as 別名]
# 或者: from OCO_Matrix.OCO_Matrix import dims [as 別名]
#.........這裏部分代碼省略.........
continue
# Get list of columns to take data from
used_columns = []
row_specifiers = []
renamed_columns = []
if options.columns == None or len(options.columns) <= 0:
used_columns = data_obj.labels
else:
for col_option in options.columns:
col_parts = col_option.split('#')
col_name = col_parts[0]
if len(col_parts) >= 2:
row_spec = col_parts[1]
if row_spec.isdigit():
row_spec = '%d' % int(row_spec)
else:
row_spec = ':'
if len(col_parts) >= 3:
col_new_name = col_parts[2]
else:
col_new_name = col_name
if col_name.isdigit():
# If column name is a integer then try and look it up
# in the labels, failing that use the index if it is not
# larger than the number of columns
if int(col_name) >= 0 and int(col_name) < len(data_obj.labels):
used_columns.append(data_obj.labels[int(col_name)])
if col_new_name == col_name:
col_new_name = data_obj.labels[int(col_name)]
elif int(col_name) < data_obj.dims[1]:
used_columns.append(col_name)
row_specifiers.append(row_spec)
renamed_columns.append(col_new_name)
elif col_name in data_obj.labels:
# Use the column name as is since it appears in the file's label list
used_columns.append(col_name)
row_specifiers.append(row_spec)
renamed_columns.append(col_new_name)
# Get data for each used column
for (col_orig_name, row_spec, col_new_name) in zip(used_columns, row_specifiers, renamed_columns):
# Find the index for the column so we know how to extract it
if col_orig_name.isdigit():
col_index = int(col_orig_name)
else:
col_index = data_obj.labels.index(col_orig_name)
col_data = data_obj.data[:, col_index]
# Try the row_spec as a range for an array otherwise use as a filter
all_data_range = range(0, data_obj.dims[0])
try:
used_data_range = eval('all_data_range[' + row_spec + ']')
except:
used_data_range = []
for row_index in all_data_range:
for col_index in range(data_obj.dims[1]):
if re.search(row_spec, str(data_obj.data[row_index, col_index])):
used_data_range.append(row_index)
break