本文整理匯總了Python中Dataset.Dataset.load方法的典型用法代碼示例。如果您正苦於以下問題:Python Dataset.load方法的具體用法?Python Dataset.load怎麽用?Python Dataset.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Dataset.Dataset
的用法示例。
在下文中一共展示了Dataset.load方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: runner
# 需要導入模塊: from Dataset import Dataset [as 別名]
# 或者: from Dataset.Dataset import load [as 別名]
def runner(
PATH_DATA,
RATIO_TEST_DATA,
RATIO_SPECIFICITY,
RATIO_CONFIDENCE,
EXPERIMENTS,
fe,
setting_name
):
results = []
errors = Counter()
qtypes = QuestionTypes()
for e in range(1, EXPERIMENTS + 1):
start = time.time()
dataset = Dataset(PATH_DATA)
dataset.load()
invprob = InverseProbabilities(dataset)
index = Index(invprob)
train = [
# (bow(fe, label, RATIO_SPECIFICITY, prob_filter=invprob) + bow(fe, text, prob_filter=invprob), label, mark)
(bow(fe, text, RATIO_SPECIFICITY, prob_filter=invprob), label, mark)
for text, label, mark in dataset.train()
]
train = train * 4
test = [
(bow(fe, label, RATIO_SPECIFICITY, prob_filter=invprob), label, mark)
# (bow(fe, text, RATIO_SPECIFICITY, prob_filter=invprob), label, mark)
for text, label, mark in dataset.test()
if mark
][:int(len(train) * RATIO_TEST_DATA)]
test += [
(bow(fe, label, RATIO_SPECIFICITY, prob_filter=invprob), label, mark)
# (bow(fe, text, RATIO_SPECIFICITY, prob_filter=invprob), label, mark)
for text, label, mark in dataset.test()
if not mark
][:len(test)]
for tbow, label, mark in train:
index.update(tbow)
index.add(label)
tp, tn, fp, fn, prec, rec, f, duration = 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0
marked = sum([1 for _, _, mark in test if mark])
for tbow, label, mark in test:
qtypes.increment(label)
expectation = sum([
invprob[w]
for w in set(bow(fe, label, RATIO_SPECIFICITY, prob_filter=invprob))
])
matches = index(tbow)
if not matches and not mark:
tn += 1
continue
elif not matches and mark:
fn += 1
errors[('fn', '', label)] += 1
qtypes.update('fn', None, label)
continue
best_match = matches[0]
guess = best_match[2]
sim = best_match[0]
ratio = sim / (expectation + 0.1)
if ratio <= RATIO_CONFIDENCE:
if not mark:
tn += 1
continue
else:
fn += 1
errors[('fn', '', label)] += 1
qtypes.update('fn', None, label)
continue
else:
if mark and guess == label:
tp += 1
else:
fp += 1
_qtype = '_'.join(guess.lower().split()[:2])
errors[('fp', guess, label)] += 1
qtypes.update('fp', guess, label)
duration = time.time() - start
if tp:
prec = tp / float(tp + fp)
rec = tp / float(tp + fn)
f = f1(prec, rec)
else:
prec, rec, f = 0.0, 0.0, 0.0
vector = (e, _r(tp), _r(tn), _r(fp), _r(fn),
_r(prec), _r(rec), _r(f), _r(duration))
results.append(vector)
#.........這裏部分代碼省略.........
示例2: print
# 需要導入模塊: from Dataset import Dataset [as 別名]
# 或者: from Dataset.Dataset import load [as 別名]
print (log)
end = time.time()
print ('Training took %.2f sec\n' % (end - start))
final_embeddings = normalized_embeddings.eval()
return final_embeddings
if __name__ == '__main__':
print ('Loading the dataset... ')
start = time.time()
data = Dataset('Text8', reformatted=True, verbose=True)
data, count, dictionary, reverse_dictionary = data.load()
end = time.time()
print ('Loading the dataset took %.2f sec.\n' % (end - start))
print ('Most common words (+UNK)', count[:5])
print ('Sample data', data[:10])
print('data:', [reverse_dictionary[di] for di in data[:8]])
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
num_sampled = 64 # Number of negative examples to sample.
示例3: Dataset
# 需要導入模塊: from Dataset import Dataset [as 別名]
# 或者: from Dataset.Dataset import load [as 別名]
# Test code for detect heart region
import detectHeartRegion as dhr
from matplotlib import pyplot
from matplotlib import cm
from Dataset import Dataset
d = Dataset("C:\\Kaggle\\train\\27", "27");
d.load();
(num_slices, num_times, width,height) = d.images.shape
rois,circles = dhr.detect_heart_region(d.images);
#plot roi in each slice at time 0
numSlicesToDisplay = 10;
pyplot.figure(1);
pyplot.subplots_adjust(left=0.1,hspace=0.1,wspace=0);
numslicesPerRow = 2;
numRows = numSlicesToDisplay/numslicesPerRow;
index = 1;
for slice in range(numSlicesToDisplay):
pyplot.subplot(numRows,2 * numslicesPerRow, index );
pyplot.imshow(d.images[slice][0],cmap=cm.Greys_r);
index = index + 1;
pyplot.subplot(numRows,2 * numslicesPerRow, index) ;
pyplot.imshow(rois[slice],cmap=cm.Greys_r);
index = index + 1;
示例4: print
# 需要導入模塊: from Dataset import Dataset [as 別名]
# 或者: from Dataset.Dataset import load [as 別名]
print ('Batch size: ', batch_size)
print ('Fully connected layer 1 size: ', full_layer_1)
if show_plot:
plt.plot(error_hist)
plt.ylabel('Error rates')
plt.show()
if __name__ == '__main__':
print ('Loading the dataset... ')
start = time.time()
data = Dataset('notMNIST', reformatted=True, verbose=True)
train_dataset, train_labels, \
valid_dataset, valid_labels, \
test_dataset, test_labels = data.load()
test_dataset_alt, test_labels_alt = data.load_test()
end = time.time()
print ('Loading the dataset took %.2f sec.\n' % (end - start))
tensorflow_conv2(train_dataset, train_labels, valid_dataset, valid_labels
,test_dataset, test_labels, test_dataset_alt, test_labels_alt
,batch_size=16, patch_size=5, depth=16, save_summary=False
,learn_rate=0.002, keep_probability=0.5, reg_param=0.000#1
,num_steps=501, full_layer_1=50)
print ('Dataset: ', data.name)