當前位置: 首頁>>代碼示例>>Python>>正文


Python Dataset.Dataset類代碼示例

本文整理匯總了Python中Dataset.Dataset的典型用法代碼示例。如果您正苦於以下問題:Python Dataset類的具體用法?Python Dataset怎麽用?Python Dataset使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Dataset類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_data

def load_data(config, cache_byte_size, files_config_key, **kwargs):
  """
  :type config: Config
  :type cache_byte_size: int
  :type chunking: str
  :type seq_ordering: str
  :rtype: (Dataset,int)
  :returns the dataset, and the cache byte size left over if we cache the whole dataset.
  """
  if not config.has(files_config_key):
    return None, 0
  if config.is_typed(files_config_key) and isinstance(config.typed_value(files_config_key), dict):
    new_kwargs = config.typed_value(files_config_key)
    assert isinstance(new_kwargs, dict)
    kwargs.update(new_kwargs)
    if 'cache_byte_size' not in new_kwargs:
      if kwargs.get('class', None) == 'HDFDataset':
        kwargs["cache_byte_size"] = cache_byte_size
    Dataset.kwargs_update_from_config(config, kwargs)
    data = init_dataset(kwargs)
  else:
    config_str = config.value(files_config_key, "")
    data = init_dataset_via_str(config_str, config=config, cache_byte_size=cache_byte_size, **kwargs)
  cache_leftover = 0
  if isinstance(data, HDFDataset):
    cache_leftover = data.definite_cache_leftover
  return data, cache_leftover
開發者ID:chagge,項目名稱:returnn,代碼行數:27,代碼來源:rnn.py

示例2: load_data

def load_data(config, cache_byte_size, files_config_key, **kwargs):
  """
  :param Config config:
  :param int cache_byte_size:
  :param str files_config_key: such as "train" or "dev"
  :param kwargs: passed on to init_dataset() or init_dataset_via_str()
  :rtype: (Dataset,int)
  :returns the dataset, and the cache byte size left over if we cache the whole dataset.
  """
  if not config.bool_or_other(files_config_key, None):
    return None, 0
  kwargs = kwargs.copy()
  kwargs.setdefault("name", files_config_key)
  if config.is_typed(files_config_key) and isinstance(config.typed_value(files_config_key), dict):
    config_opts = config.typed_value(files_config_key)
    assert isinstance(config_opts, dict)
    kwargs.update(config_opts)
    if 'cache_byte_size' not in config_opts:
      if kwargs.get('class', None) == 'HDFDataset':
        kwargs["cache_byte_size"] = cache_byte_size
    Dataset.kwargs_update_from_config(config, kwargs)
    data = init_dataset(kwargs)
  else:
    config_str = config.value(files_config_key, "")
    data = init_dataset_via_str(config_str, config=config, cache_byte_size=cache_byte_size, **kwargs)
  cache_leftover = 0
  if isinstance(data, HDFDataset):
    cache_leftover = data.definite_cache_leftover
  return data, cache_leftover
開發者ID:rwth-i6,項目名稱:returnn,代碼行數:29,代碼來源:rnn.py

示例3: test_read_data_points

    def test_read_data_points(self):
        set = Dataset()
        set.read_data_points("flueaeg.txt")

        data = set.get_data

        self.assertEqual(data[100.0], 16.6)

        # here we should see an error printet
        set.read_data_points("findes-ikke.txt")
開發者ID:ttsoftware,項目名稱:POM,代碼行數:10,代碼來源:DatasetTest.py

示例4: fixSizeTypes

def fixSizeTypes(dataLines):
		
	fixedDataLines = []

	dataset = Dataset(dataLines)

	for line in dataset.dataLines:

		columns = dataset.getColumns(line)
		columns['size_type'] = columns['size_type'].replace(" ", "_")
		fixedDataLines.append( dataset.getLine(columns) )

	return fixedDataLines
開發者ID:PanosRCng,項目名稱:suitaby_python_tools,代碼行數:13,代碼來源:preprocessor.py

示例5: dev

def dev():
    generator = Generator(10)
    print("Generating...")
    samples, labels = generator.generate(20000)
    print("Done generating. Shuffling...")
    Generator.shuffle_in_unison_scary(samples, labels)
    print("Done shuffling. Splitting...")
    db = Dataset()
    db.init(samples, labels, 17000, 1500)
    print("Done splitting. Saving...")
    fileName = 'medium20000_10_shuffled_0.3obstacles.pkl'
    db.saveTo(fileName)
    print("Done saving to", fileName)
開發者ID:laura-rieger,項目名稱:MotionPlanningWithDNN,代碼行數:13,代碼來源:DatasetGenerator.py

示例6: changeURLs

def changeURLs(dataLines):

	changedUrlsLines = []

	dataset = Dataset(dataLines)

	for line in dataset.dataLines:

		columns = dataset.getColumns(line)
		columns['url'] = Brand.brandsUrls[ columns['brand'] ]
		changedUrlsLines.append( dataset.getLine(columns) )

	return changedUrlsLines
開發者ID:PanosRCng,項目名稱:suitaby_python_tools,代碼行數:13,代碼來源:preprocessor.py

示例7: __init__

 def __init__(self, id=None, drawing=None,
              posX=0, posY=0,
              x1=0, y1=0, x2=0, y2=0,
              pen=None, brush=None):
     Dataset.__init__(self, id)
     self.drawing = drawing
     self.posX = posX
     self.posY = posY
     self.x1 = x1
     self.y1 = y1
     self.x2 = x2
     self.y2 = y2
     self.pen = pen
     self.brush = brush
開發者ID:BackupTheBerlios,項目名稱:profilelogger-svn,代碼行數:14,代碼來源:Ellipse.py

示例8: mergeSynonymousSizeTypes

def mergeSynonymousSizeTypes(dataLines):
		
	mergedDataLines = []

	dataset = Dataset(dataLines)

	for line in dataset.dataLines:

		columns = dataset.getColumns(line)

		if columns['size_type'] in SizeType.mergedSizeTypes:
			columns['size_type'] = SizeType.mergedSizeTypes[ columns['size_type'] ]

		mergedDataLines.append( dataset.getLine(columns) )

	return mergedDataLines
開發者ID:PanosRCng,項目名稱:suitaby_python_tools,代碼行數:16,代碼來源:preprocessor.py

示例9: train_set_loss_vars_for_cur_batches

 def train_set_loss_vars_for_cur_batches(self):
   """
   Called via Engine.SeqTrainParallelControl.
   """
   assert self.train_have_loss_for_cur_batches()
   # See EngineUtil.assign_dev_data for reference.
   from Dataset import Dataset
   n_time, n_batch = Dataset.index_shape_for_batches(self.train_batches)
   n_output_dim = self.output_layer.attrs['n_out']
   output_loss = numpy.zeros((n_batch,), "float32")
   output_hat_y = numpy.zeros((n_time, n_batch, n_output_dim), "float32")
   offset_slice = 0
   for batch in self.train_batches:
     for seq in batch.seqs:
       o = seq.batch_frame_offset
       q = seq.batch_slice + offset_slice
       l = seq.frame_length
       # input-data, input-index will also be set in this loop. That is data-key "data".
       for k in [self.output_target]:
         if l[k] == 0: continue
         loss, hat_y = self.get_loss_and_hat_y(seq.seq_idx)
         assert seq.seq_start_frame[k] < hat_y.shape[0]
         assert seq.seq_end_frame[k] <= hat_y.shape[0]
         output_loss[q] += loss * float(l[k]) / hat_y.shape[0]
         output_hat_y[o[k]:o[k] + l[k], q] = hat_y[seq.seq_start_frame[k]:seq.seq_end_frame[k]]
   self.output_var_loss.set_value(output_loss)
   self.output_var_hat_y.set_value(output_hat_y)
開發者ID:atuxhe,項目名稱:returnn,代碼行數:27,代碼來源:SprintErrorSignals.py

示例10: clone

def clone():
	print 'Enter name for new dataset:'
	dsname = raw_input()

	os.system('mkdir %s' % dsname)
	ds = Dataset()
	db = getDB()
	cur = db.cursor(MySQLdb.cursors.DictCursor)

	cur.execute("SELECT * FROM Answers WHERE isRetrieved=1")
	for row in cur.fetchall():
		ds.X.append(row['answer'])
		ds.Y.append(row['author'])
		ds.ts = max([ds.ts, row['updated_at']])

	with open('%s/data' % dsname, 'w') as f:
		cPickle.dump(ds, f)
	print 'Dataset cloned'
開發者ID:BigBull90,項目名稱:anon,代碼行數:18,代碼來源:lasso.py

示例11: getXAtMaxIm

def getXAtMaxIm(dataset: Dataset):
    data = dataset.getPlane()
    curMin = data[0][0]
    bestCycle = 0
    for cycle in range(len(data)):
        if max(data[cycle]) > curMin:
            curMin = max(data[cycle])
            bestCycle = cycle
    return bestCycle
開發者ID:tuckerowens,項目名稱:eCLAM,代碼行數:9,代碼來源:Calculations.py

示例12: doUpperCase

def doUpperCase(dataLines):
		
	upperCaseLines = []

	dataset = Dataset(dataLines)

	for line in dataset.dataLines:

		columns = dataset.getColumns(line)

		columns['size_type'] = columns['size_type'].upper()
		columns['label'] = columns['label'].upper()
		columns['brand'] = columns['brand'].upper()
		columns['clothe_category'] = columns['clothe_category'].upper()
		columns['size_category'] = columns['size_category'].upper()
		columns['gender'] = columns['gender'].upper()

		upperCaseLines.append( dataset.getLine(columns) )

	return upperCaseLines
開發者ID:PanosRCng,項目名稱:suitaby_python_tools,代碼行數:20,代碼來源:preprocessor.py

示例13: get_all_dataset

    def get_all_dataset(self, idmodel):
        con = lite.connect(self.name)

        with con:
            con.row_factory = lite.Row
            cur = con.cursor()
            cur.execute("SELECT * FROM dataset where idmodel=:idmodel", {'idmodel': idmodel})
                    
            rows = cur.fetchall()
            dataset = Dataset.from_db_rows(rows, self.setup)
            
        return dataset   
開發者ID:svidela,項目名稱:sbloopy,代碼行數:12,代碼來源:DB.py

示例14: main

def main():
	global X
	global Y

	ds = Dataset.open('quora')
	X,Y = ds.X,ds.Y


	# Z = [re.findall(r"[\w']+", x) for x in X]
	# Z = [filter(None, x.split('.')) for x in X]
	# Z = ["".join(s) for s in Z]
	# Z = [z.split(' ') for z in Z]
	# Z = [[len(s) for s in z] for z in Z]

	# feature = []
	# for a in Z:
	# 	wordLenDist = [0]*100
	# 	for ln in a:
	# 			wordLenDist[ln]+=1
	# 	feature.append(wordLenDist)

	feature = []
	tokenizer = RegexpTokenizer(r'\w+')
	for x in X:
		All = len(nltk.word_tokenize(x))
		numPunctuation = All - len(tokenizer.tokenize(x))
		numWords = All - numPunctuation
		ff = [numPunctuation, numWords]
		feature.append(ff)


	X = feature
	Z = zip(X, Y)
	shuffle(Z)
	(X, Y) = zip(*Z)


	si=0
	acc = 0.0
	cnt = 0
	while si<len(X):
		Xe = X[si:si+50]
		Ye = Y[si:si+50]
		X1 = X[:si] + X[si+50:]
		Y1 = Y[:si] + Y[si+50:]
		acc += train_chunk(X1, Y1, Xe, Ye)
		cnt += 1
		si += 50

	print 'Accuracy: %f' % (acc/cnt)
開發者ID:BigBull90,項目名稱:anon,代碼行數:50,代碼來源:punctuation.py

示例15: benchmark

def benchmark(lstm_unit, use_gpu):
  """
  :param str lstm_unit: e.g. "LSTMBlock", one of LstmCellTypes
  :param bool use_gpu:
  :return: runtime in seconds of the training itself, excluding initialization
  :rtype: float
  """
  device = {True: "GPU", False: "CPU"}[use_gpu]
  key = "%s:%s" % (device, lstm_unit)
  print(">>> Start benchmark for %s." % key)
  config = Config()
  config.update(make_config_dict(lstm_unit=lstm_unit, use_gpu=use_gpu))
  dataset_kwargs = config.typed_value("train")
  Dataset.kwargs_update_from_config(config, dataset_kwargs)
  dataset = init_dataset(dataset_kwargs)
  engine = Engine(config=config)
  engine.init_train_from_config(config=config, train_data=dataset)
  print(">>> Start training now for %s." % key)
  start_time = time.time()
  engine.train()
  runtime = time.time() - start_time
  print(">>> Runtime of %s: %s" % (key, hms_fraction(runtime)))
  engine.finalize()
  return runtime
開發者ID:rwth-i6,項目名稱:returnn,代碼行數:24,代碼來源:demo-tf-lstm-benchmark.py


注:本文中的Dataset.Dataset類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。