當前位置: 首頁>>代碼示例>>Python>>正文


Python Classifier.trainModel方法代碼示例

本文整理匯總了Python中Classifier.Classifier.trainModel方法的典型用法代碼示例。如果您正苦於以下問題:Python Classifier.trainModel方法的具體用法?Python Classifier.trainModel怎麽用?Python Classifier.trainModel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Classifier.Classifier的用法示例。


在下文中一共展示了Classifier.trainModel方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import trainModel [as 別名]
def main(sc):
    start = timer()

    #### 1) Recuperando os produtos da base de dados
    #categs = ["Computers & Tablets", "Video Games", "TV & Home Theater"]# , ]
    stpwrds = stopwords.words('portuguese')
    products = findProductsByCategory([])
    
    print '####### Creating product rdd with {} product'.format(len(products))
    
    productRDD = sc.parallelize(products)
    #productRDD, discardedProductRDD = entiryProductRDD.randomSplit([2, 8], seed=0L)
   

    #### 2) Criadno o corpus de documento utilizando 
    corpusRDD = productRDD.map(lambda s: (s[0], word_tokenize(s[1].lower()), s[2], s[3])).map(lambda s: (s[0], [PorterStemmer().stem(x) for x in s[1] if x not in stpwrds], s[2], s[3] )).map(lambda s: (s[0], [x[0] for x in pos_tag(s[1]) if x[1] == 'NN' or x[1] == 'NNP'], s[2], s[3])).cache()

    idfsRDD = idfs(corpusRDD)
    idfsRDDBroadcast = sc.broadcast(idfsRDD.collectAsMap())
    tfidfRDD = corpusRDD.map(lambda x: (x[0], tfidf(x[1], idfsRDDBroadcast.value), x[2], x[3]))
    category = productRDD.map(lambda x: x[2]).distinct().collect()
    categoryAndSubcategory = productRDD.map(lambda x: (x[2], x[3])).distinct().collect()
    tokens = corpusRDD.flatMap(lambda x: x[1]).distinct().collect()

    insertTokensAndCategories(tokens, category, categoryAndSubcategory)
    
    classifier = Classifier(sc, 'NaiveBayes')   
    
    
    trainingVectSpaceCategoryRDD, testVectSpaceCategoryRDD = classifier.createVectSpaceCategory(tfidfRDD, category, tokens).randomSplit([8, 2], seed=0L)
    modelNaiveBayesCategory = classifier.trainModel(trainingVectSpaceCategoryRDD, '/dados/models/naivebayes/category_new')
    predictionAndLabelCategoryRDD = testVectSpaceCategoryRDD.map(lambda p : (category[int(modelNaiveBayesCategory.predict(p.features))], category[int(p.label)]))
    acuraccyCategory = float(predictionAndLabelCategoryRDD.filter(lambda (x, v): x[0] == v[0]).count())/float(predictionAndLabelCategoryRDD.count())
    print 'the accuracy of the Category Naive Bayes model is %f' % acuraccyCategory

    trainingVectSpaceSubcategory, testVectSpaceSubcategory = classifier.createVectSpaceSubcategory(tfidfRDD, categoryAndSubcategory, tokens).randomSplit([8, 2], seed=0L)
    modelNaiveBayesSubcategory = classifier.trainModel(trainingVectSpaceSubcategory, '/dados/models/naivebayes/subcategory_new')

    predictionAndLabelSubcategory = testVectSpaceSubcategory.map(lambda p : (categoryAndSubcategory[int(modelNaiveBayesSubcategory.predict(p.features))], categoryAndSubcategory[int(p.label)]))
    acuraccySubcategory = float(predictionAndLabelSubcategory.filter(lambda (x, v): x[0] == v[0]).count())/float(predictionAndLabelSubcategory.count())
    print 'the accuracy of the Subcategory Naive Bayes model is %f' % acuraccySubcategory

    #test with DecisionTree Model
    classifierDT = Classifier(sc, 'DecisionTree')
    trainingVectSpaceCategory, testVectSpaceCategory = classifierDT.createVectSpaceCategory(tfidfRDD, category, tokens).randomSplit([8, 2], seed=0L)
    modelDecisionTreeCategory = classifierDT.trainModel(trainingVectSpaceCategory, '/dados/models/dt/category_new')

    predictions = modelDecisionTreeCategory.predict(testVectSpaceCategory.map(lambda x: x.features))
    predictionAndLabelCategory = testVectSpaceCategory.map(lambda lp: lp.label).zip(predictions)
    acuraccyDecisionTree = float(predictionAndLabelCategory.filter(lambda (x, v): x == v).count())/float(predictionAndLabelCategory.count())   
    print 'the accuracy of the Decision Tree model is %f' % acuraccyDecisionTree

    elap = timer()-start
    print 'it tooks %d seconds' % elap
開發者ID:aprando,項目名稱:master-thesis-social-recsys,代碼行數:56,代碼來源:train_classifier.py


注:本文中的Classifier.Classifier.trainModel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。