本文整理匯總了Python中Classifier.Classifier.train方法的典型用法代碼示例。如果您正苦於以下問題:Python Classifier.train方法的具體用法?Python Classifier.train怎麽用?Python Classifier.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Classifier.Classifier
的用法示例。
在下文中一共展示了Classifier.train方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_classifier
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
def load_classifier(neighbours, blur_scale, c=None, gamma=None, verbose=0):
classifier_file = 'classifier_%s_%s.dat' \
% (blur_scale, neighbours)
classifier_path = DATA_FOLDER + classifier_file
if exists(classifier_file):
if verbose:
print 'Loading classifier...'
classifier = Classifier(filename=classifier_path, \
neighbours=neighbours, verbose=verbose)
elif c != None and gamma != None:
if verbose:
print 'Training new classifier...'
classifier = Classifier(c=c, gamma=gamma, neighbours=neighbours, \
verbose=verbose)
learning_set = load_learning_set(neighbours, blur_scale, \
verbose=verbose)
classifier.train(learning_set)
classifier.save(classifier_path)
else:
raise Exception('No soft margin and gamma specified.')
return classifier
示例2: main
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
def main():
try:
trainingData, tuningData, testData, priorSpam = buildDataSets()
nbc = Classifier(priorSpam, COUNT_THRESHOLD, SMOOTHING_FACTOR, DEFAULT_PROBABILITY)
# nbc = Classifier2(priorSpam, 0, .01, None)
nbc.train(trainingData)
nbc.classify(testData)
report(testData)
except Exception as e:
print e
return 5
示例3: run
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
def run():
clf= Classifier('breast-cancer-wisconsin.data.txt')
clf.clf_fit_transform()
clf.default_accuracy_lr()
clf.weight_coefficent_lr()
clf.SBS_lf()
# it takes long time to run the Random forest Code ...uncomment to check the result
# clf.feature_selection_rf()
clf.PCA()
clf.pipe_kf_validation()
clf.clf_learning_curve()
clf.clf_validation_curve()
clf.clf_roc_curve()
clf.train()
clf.l1l2()
dest = os.path.join('classifier', 'pkl_objects')
if not os.path.exists(dest):
os.makedirs(dest)
pickle.dump(clf, open(os.path.join(dest, 'classifier.pkl'), 'wb'), protocol=2)
示例4: Classifier
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
('I had a ton of homework', 'hyperbole'),
('If I can’t buy that new game I will die', 'hyperbole')]
nor_tweets = [('I do not like this car', 'normal'),
('I like this car', 'normal'),
('This view is horrible', 'normal'),
('I feel tired this morning', 'normal'),
('I am not looking forward to the concert', 'normal'),
('The door is black', 'normal'),
('I love you', 'normal'),
('He is my enemy', 'normal')]
tweets = hyp_tweets + nor_tweets
classifier = Classifier()
classifier.train(tweets)
# for tweet in Fetcher.fetch("hyperbole", 10):
# print(classifier.classify(tweet))
@app.route('/')
@app.route("/<count>")
def index(count=10):
tweets = []
for tweet in Fetcher.fetch("hyperbole", int(count)):
tweets.append((tweet, classifier.classify(tweet)))
return render_template('index.html', tweets=set(tweets), count=count)
if __name__ == "__main__":
app.debug = True
app.run()
示例5: test_predict
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
def test_predict(self):
x = Classifier()
x.train()
predicted = x.predict("train", "directory")
actual = [(u'intermediate test', 2), (u'elementary test', 1), (u'advanced test', 0)]
self.assertEqual(predicted, actual)
示例6: load_learning_set
# 需要導入模塊: from Classifier import Classifier [as 別名]
# 或者: from Classifier.Classifier import train [as 別名]
# Load learning set and test set
learning_set = load_learning_set(neighbours, blur_scale, verbose=1)
test_set = load_test_set(neighbours, blur_scale, verbose=1)
# Perform a grid-search to find the optimal values for C and gamma
C = [float(2 ** p) for p in xrange(-5, 16, 2)]
Y = [float(2 ** p) for p in xrange(-15, 4, 2)]
results = []
best = (0,)
i = 0
for c in C:
for y in Y:
classifier = Classifier(c=c, gamma=y, neighbours=neighbours, verbose=1)
classifier.train(learning_set)
result = classifier.test(test_set)
if result > best[0]:
best = (result, c, y, classifier)
results.append(result)
i += 1
print '%d of %d, c = %f, gamma = %f, result = %d%%' \
% (i, len(C) * len(Y), c, y, int(round(result * 100)))
i = 0
s = ' c\y'
for y in Y:
s += ' | %f' % y