本文整理匯總了Python中TensorflowUtils.process_image方法的典型用法代碼示例。如果您正苦於以下問題:Python TensorflowUtils.process_image方法的具體用法?Python TensorflowUtils.process_image怎麽用?Python TensorflowUtils.process_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類TensorflowUtils
的用法示例。
在下文中一共展示了TensorflowUtils.process_image方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read_input
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def read_input(model_params):
if FLAGS.mode == "test":
content_image = get_image(FLAGS.test_image_path)
print content_image.shape
processed_content = utils.process_image(content_image, model_params["mean_pixel"]).astype(np.float32) / 255.0
return processed_content, None
else:
data_directory = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
filenames = [os.path.join(data_directory, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
filename_queue = tf.train.string_input_producer(filenames)
print "Reading cifar10 data"
read_input = read_cifar10(model_params, filename_queue)
num_preprocess_threads = 8
min_queue_examples = int(0.4 * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN)
print "Shuffling train batch"
input_images, input_content_features = tf.train.shuffle_batch([read_input.image, read_input.content_features],
batch_size=FLAGS.batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
return input_images, input_content_features
示例2: read_cifar10
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def read_cifar10(model_params, filename_queue):
class CIFAR10Record(object):
pass
result = CIFAR10Record()
label_bytes = 1 # 2 for CIFAR-100
result.height = IMAGE_SIZE
result.width = IMAGE_SIZE
result.depth = 3
image_bytes = result.height * result.width * result.depth
record_bytes = label_bytes + image_bytes
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.uint8)
depth_major = tf.cast(tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
[result.depth, result.height, result.width]), tf.float32)
result.image = utils.process_image(tf.transpose(depth_major, [1, 2, 0]), model_params['mean_pixel']) / 255.0
extended_image = 255 * tf.reshape(result.image, (1, result.height, result.width, result.depth))
result.net = vgg_net(model_params["weights"], extended_image)
content_feature = result.net[CONTENT_LAYER]
result.content_features = content_feature
return result
示例3: deepdream_image
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def deepdream_image(model_params, image, octave_scale=1.4, no_of_octave=4):
filename = "%s_deepdream_%s.jpg" % (os.path.splitext((FLAGS.image_path.split("/")[-1]))[0], DREAM_LAYER)
processed_image = utils.process_image(image, model_params["mean_pixel"]).astype(np.float32)
input_image = tf.placeholder(tf.float32)
dream_net = vgg_net(model_params["weights"], input_image)
def calc_grad_tiled(img, gradient, tile_size=512):
sz = tile_size
h, w = img.shape[1:3]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 2), sy, 1)
gradient_val = np.zeros_like(img)
for y in xrange(0, max(h - sz // 2, sz), sz):
for x in xrange(0, max(w - sz // 2, sz), sz):
sub_img = img_shift[:, y:y + sz, x:x + sz]
# print sub_img.shape
g = sess.run(gradient, {input_image: sub_img})
gradient_val[:, y:y + sz, x:x + sz] = g
return np.roll(np.roll(gradient_val, -sx, 2), -sy, 1)
step = LEARNING_RATE
feature = DREAM_FEATURE
with tf.Session() as sess:
dream_layer_features = dream_net[DREAM_LAYER][:, :, :, feature]
feature_score = tf.reduce_mean(dream_layer_features)
grad_op = tf.gradients(feature_score, input_image)[0]
dummy_image = processed_image.copy()+100.0
for itr in xrange(5):
octaves = []
for i in xrange(no_of_octave - 1):
hw = dummy_image.shape[1:3]
lo = resize_image(dummy_image, np.int32(np.float32(hw) / octave_scale))
hi = dummy_image - resize_image(dummy_image, hw)
dummy_image = lo
octaves.append(hi)
for octave in xrange(no_of_octave):
if octave > 0:
hi = octaves[-octave]
dummy_image = resize_image(dummy_image, hi.shape[1:3]) + hi
for i in xrange(MAX_ITERATIONS):
grad = calc_grad_tiled(dummy_image, grad_op)
dummy_image += grad * (step / (np.abs(grad).mean() + 1e-8))
print '.',
print "."
# step /= 2.0 # halfing step size every itr
feature += 15
temp_file = "%d_%s" % (itr, filename)
# print dummy_image.shape
output = dummy_image.reshape(processed_image.shape[1:]) - 100.0
save_image(os.path.join(FLAGS.logs_dir, "checkpoints", temp_file), output, model_params["mean_pixel"])
示例4: main
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.model_dir, DATA_URL)
model_data = get_model_data()
invert_image = get_image(FLAGS.image_path)
print invert_image.shape
mean = model_data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
processed_image = utils.process_image(invert_image, mean_pixel).astype(np.float32)
weights = np.squeeze(model_data['layers'])
invert_net = vgg_net(weights, processed_image)
dummy_image = utils.weight_variable(invert_image.shape, stddev=np.std(invert_image) * 0.1)
tf.histogram_summary("Image Output", dummy_image)
image_net = vgg_net(weights, dummy_image)
with tf.Session() as sess:
invert_layer_features = invert_net[INVERT_LAYER].eval()
loss = 2 * tf.nn.l2_loss(image_net[INVERT_LAYER] - invert_layer_features) / invert_layer_features.size
tf.scalar_summary("Loss", loss)
summary_op = tf.merge_all_summaries()
train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)
best_loss = float('inf')
best = None
summary_writer = tf.train.SummaryWriter(FLAGS.log_dir)
sess.run(tf.initialize_all_variables())
for i in range(1, MAX_ITERATIONS):
train_op.run()
if i % 10 == 0 or i == MAX_ITERATIONS - 1:
this_loss = loss.eval()
print('Step %d' % (i)),
print(' total loss: %g' % this_loss)
summary_writer.add_summary(summary_op.eval(), global_step=i)
if this_loss < best_loss:
best_loss = this_loss
best = dummy_image.eval()
output = utils.unprocess_image(best.reshape(invert_image.shape[1:]), mean_pixel)
scipy.misc.imsave("invert_check.png", output)
output = utils.unprocess_image(best.reshape(invert_image.shape[1:]), mean_pixel)
scipy.misc.imsave("output.png", output)
示例5: main
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.model_dir, MODEL_URL)
utils.maybe_download_and_extract(FLAGS.data_dir, DATA_URL, is_tarfile=True)
model_data = get_model_data()
model_params = {}
mean = model_data['normalization'][0][0][0]
model_params['mean_pixel'] = np.mean(mean, axis=(0, 1))
model_params['weights'] = np.squeeze(model_data['layers'])
style_image = get_image(FLAGS.style_path)
processed_style = utils.process_image(style_image, model_params['mean_pixel']).astype(np.float32)
style_net = vgg_net(model_params['weights'], processed_style)
tf.image_summary("Style_Image", style_image)
with tf.Session() as sess:
print "Evaluating style features..."
style_features = {}
for layer in STYLE_LAYERS:
features = style_net[layer].eval()
features = np.reshape(features, (-1, features.shape[3]))
style_gram = np.matmul(features.T, features) / features.size
style_features[layer] = style_gram
print "Reading image inputs"
input_image, input_content = read_input(model_params)
print "Setting up inference"
output_image = 255 * inference_strided(input_image)
print "Creating saver.."
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.log_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print "Model restored..."
if FLAGS.mode == "test":
test(sess, output_image, model_params['mean_pixel'])
return
print "Calculating content loss..."
image_net = vgg_net(model_params['weights'], output_image)
content_loss = CONTENT_WEIGHT * tf.nn.l2_loss(image_net[CONTENT_LAYER] - input_content) / utils.get_tensor_size(
input_content)
print content_loss.get_shape()
tf.scalar_summary("Content_loss", content_loss)
print "Calculating style loss..."
style_losses = []
for layer in STYLE_LAYERS:
image_layer = image_net[layer]
_, height, width, number = map(lambda i: i.value, image_layer.get_shape())
size = height * width * number
feats = tf.reshape(image_layer, (-1, number))
image_gram = tf.matmul(tf.transpose(feats), feats) / size
style_losses.append(0.5 * tf.nn.l2_loss(image_gram - style_features[layer]))
style_loss = STYLE_WEIGHT * reduce(tf.add, style_losses)
print style_loss.get_shape()
tf.scalar_summary("Style_loss", style_loss)
print "Calculating variational loss..."
tv_y_size = utils.get_tensor_size(output_image[:, 1:, :, :])
tv_x_size = utils.get_tensor_size(output_image[:, :, 1:, :])
tv_loss = VARIATION_WEIGHT * (
(tf.nn.l2_loss(output_image[:, 1:, :, :] - output_image[:, :IMAGE_SIZE - 1, :, :]) /
tv_y_size) +
(tf.nn.l2_loss(output_image[:, :, 1:, :] - output_image[:, :, :IMAGE_SIZE - 1, :]) /
tv_x_size))
print tv_loss.get_shape()
tf.scalar_summary("Variation_loss", tv_loss)
loss = content_loss + style_loss + tv_loss
tf.scalar_summary("Total_loss", loss)
print "Setting up train operation..."
train_step = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)
print "Setting up summary write"
summary_writer = tf.train.SummaryWriter(FLAGS.log_dir, sess.graph_def)
summary_op = tf.merge_all_summaries()
print "initializing all variables"
sess.run(tf.initialize_all_variables())
tf.train.start_queue_runners(sess=sess)
print "Running training..."
for step in range(MAX_ITERATIONS):
if step % 10 == 0:
this_loss, summary_str = sess.run([loss, summary_op])
summary_writer.add_summary(summary_str, global_step=step)
print('%s : Step %d' % (datetime.now(), step)),
print('total loss: %g' % this_loss)
if step % 100 == 0:
print ("Step %d" % step),
#.........這裏部分代碼省略.........
示例6: inference
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def inference(image, keep_prob):
"""
Semantic segmentation network definition
:param image: input image. Should have values in range 0-255
:param keep_prob:
:return:
"""
print("setting up vgg initialized conv layers ...")
model_data = utils.get_model_data(FLAGS.model_dir, MODEL_URL)
mean = model_data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
weights = np.squeeze(model_data['layers'])
processed_image = utils.process_image(image, mean_pixel)
with tf.variable_scope("inference"):
image_net = vgg_net(weights, processed_image)
conv_final_layer = image_net["conv5_3"]
pool5 = utils.max_pool_2x2(conv_final_layer)
W6 = utils.weight_variable([7, 7, 512, 4096], name="W6")
b6 = utils.bias_variable([4096], name="b6")
conv6 = utils.conv2d_basic(pool5, W6, b6)
relu6 = tf.nn.relu(conv6, name="relu6")
if FLAGS.debug:
utils.add_activation_summary(relu6)
relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)
W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7")
b7 = utils.bias_variable([4096], name="b7")
conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
relu7 = tf.nn.relu(conv7, name="relu7")
if FLAGS.debug:
utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSESS], name="W8")
b8 = utils.bias_variable([NUM_OF_CLASSESS], name="b8")
conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
# annotation_pred1 = tf.argmax(conv8, dimension=3, name="prediction1")
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])
W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3")
b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3")
conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3
示例7: main
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import process_image [as 別名]
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.model_dir, DATA_URL)
model_data = get_model_data()
mean = model_data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
weights = np.squeeze(model_data['layers'])
content_image = get_image(FLAGS.content_path)
print content_image.shape
processed_content = utils.process_image(content_image, mean_pixel).astype(np.float32)
style_image = get_image(FLAGS.style_path)
processed_style = utils.process_image(style_image, mean_pixel).astype(np.float32)
content_net = vgg_net(weights, processed_content)
style_net = vgg_net(weights, processed_style)
dummy_image = utils.weight_variable(content_image.shape, stddev=np.std(content_image) * 0.1)
image_net = vgg_net(weights, dummy_image)
with tf.Session() as sess:
content_losses = []
for layer in CONTENT_LAYERS:
feature = content_net[layer].eval()
content_losses.append(tf.nn.l2_loss(image_net[layer] - feature))
content_loss = CONTENT_WEIGHT * reduce(tf.add, content_losses)
style_losses = []
for layer in STYLE_LAYERS:
features = style_net[layer].eval()
features = np.reshape(features, (-1, features.shape[3]))
style_gram = np.matmul(features.T, features) / features.size
image_layer = image_net[layer]
_, height, width, number = map(lambda i: i.value, image_layer.get_shape())
size = height * width * number
feats = tf.reshape(image_layer, (-1, number))
image_gram = tf.matmul(tf.transpose(feats), feats) / size
style_losses.append(0.5*tf.nn.l2_loss(image_gram - style_gram))
style_loss = STYLE_WEIGHT * reduce(tf.add, style_losses)
tv_y_size = utils.get_tensor_size(dummy_image[:, 1:, :, :])
tv_x_size = utils.get_tensor_size(dummy_image[:, :, 1:, :])
tv_loss = VARIATION_WEIGHT * (
(tf.nn.l2_loss(dummy_image[:, 1:, :, :] - dummy_image[:, :content_image.shape[1] - 1, :, :]) /
tv_y_size) +
(tf.nn.l2_loss(dummy_image[:, :, 1:, :] - dummy_image[:, :, :content_image.shape[2] - 1, :]) /
tv_x_size))
loss = content_loss + style_loss + tv_loss
train_step = tf.train.MomentumOptimizer(LEARNING_RATE,MOMENTUM).minimize(loss)
best_loss = float('inf')
best = None
sess.run(tf.initialize_all_variables())
for i in range(1, MAX_ITERATIONS):
train_step.run()
if i % 10 == 0 or i == MAX_ITERATIONS - 1:
this_loss = loss.eval()
print('Step %d' % (i)),
print(' total loss: %g' % this_loss)
if this_loss < best_loss:
best_loss = this_loss
best = dummy_image.eval()
output = utils.unprocess_image(best.reshape(content_image.shape[1:]), mean_pixel)
scipy.misc.imsave("output_check.png", output)
if i % 100 == 0 or i == MAX_ITERATIONS - 1:
print(' content loss: %g' % content_loss.eval()),
print(' style loss: %g' % style_loss.eval()),
print(' tv loss: %g' % tv_loss.eval())
output = utils.unprocess_image(best.reshape(content_image.shape[1:]), mean_pixel)
scipy.misc.imsave("output.png", output)