本文整理匯總了Python中TensorflowUtils.avg_pool_2x2方法的典型用法代碼示例。如果您正苦於以下問題:Python TensorflowUtils.avg_pool_2x2方法的具體用法?Python TensorflowUtils.avg_pool_2x2怎麽用?Python TensorflowUtils.avg_pool_2x2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類TensorflowUtils
的用法示例。
在下文中一共展示了TensorflowUtils.avg_pool_2x2方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: vgg_net
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import avg_pool_2x2 [as 別名]
def vgg_net(weights, image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3' # 'conv3_4', 'relu3_4', 'pool3',
# 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
# 'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
#
# 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
# 'relu5_3', 'conv5_4', 'relu5_4'
)
net = {}
current = image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = utils.conv2d_basic(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = utils.avg_pool_2x2(current)
net[name] = current
assert len(net) == len(layers)
return net
示例2: inference_fully_convolutional
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import avg_pool_2x2 [as 別名]
def inference_fully_convolutional(dataset):
'''
Fully convolutional inference on notMNIST dataset
:param datset: [batch_size, 28*28*1] tensor
:return: logits
'''
dataset_reshaped = tf.reshape(dataset, [-1, 28, 28, 1])
with tf.name_scope("conv1") as scope:
W_conv1 = utils.weight_variable_xavier_initialized([3, 3, 1, 32], name="W_conv1")
b_conv1 = utils.bias_variable([32], name="b_conv1")
h_conv1 = tf.nn.relu(utils.conv2d_strided(dataset_reshaped, W_conv1, b_conv1))
with tf.name_scope("conv2") as scope:
W_conv2 = utils.weight_variable_xavier_initialized([3, 3, 32, 64], name="W_conv2")
b_conv2 = utils.bias_variable([64], name="b_conv2")
h_conv2 = tf.nn.relu(utils.conv2d_strided(h_conv1, W_conv2, b_conv2))
with tf.name_scope("conv3") as scope:
W_conv3 = utils.weight_variable_xavier_initialized([3, 3, 64, 128], name="W_conv3")
b_conv3 = utils.bias_variable([128], name="b_conv3")
h_conv3 = tf.nn.relu(utils.conv2d_strided(h_conv2, W_conv3, b_conv3))
with tf.name_scope("conv4") as scope:
W_conv4 = utils.weight_variable_xavier_initialized([3, 3, 128, 256], name="W_conv4")
b_conv4 = utils.bias_variable([256], name="b_conv4")
h_conv4 = tf.nn.relu(utils.conv2d_strided(h_conv3, W_conv4, b_conv4))
with tf.name_scope("conv5") as scope:
# W_conv5 = utils.weight_variable_xavier_initialized([2, 2, 256, 512], name="W_conv5")
# b_conv5 = utils.bias_variable([512], name="b_conv5")
# h_conv5 = tf.nn.relu(utils.conv2d_strided(h_conv4, W_conv5, b_conv5))
h_conv5 = utils.avg_pool_2x2(h_conv4)
with tf.name_scope("conv6") as scope:
W_conv6 = utils.weight_variable_xavier_initialized([1, 1, 256, 10], name="W_conv6")
b_conv6 = utils.bias_variable([10], name="b_conv6")
logits = tf.nn.relu(utils.conv2d_basic(h_conv5, W_conv6, b_conv6))
print logits.get_shape()
logits = tf.reshape(logits, [-1, 10])
return logits
示例3: vgg_net
# 需要導入模塊: import TensorflowUtils [as 別名]
# 或者: from TensorflowUtils import avg_pool_2x2 [as 別名]
def vgg_net(weights, image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
net = {}
current = image
for i, name in enumerate(layers):
if name in ['conv3_4', 'relu3_4', 'conv4_4', 'relu4_4', 'conv5_4', 'relu5_4']:
continue
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = utils.get_variable(np.transpose(kernels, (1, 0, 2, 3)), name=name + "_w")
bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
current = utils.conv2d_basic(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current, name=name)
if FLAGS.debug:
utils.add_activation_summary(current)
elif kind == 'pool':
current = utils.avg_pool_2x2(current)
net[name] = current
return net