本文整理匯總了Python中TensorflowUtils類的典型用法代碼示例。如果您正苦於以下問題:Python TensorflowUtils類的具體用法?Python TensorflowUtils怎麽用?Python TensorflowUtils使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了TensorflowUtils類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: activation_function
def activation_function(x, name=""):
activation_dict = {'relu': tf.nn.relu(x, name), 'elu': tf.nn.elu(x, name), 'lrelu': utils.leaky_relu(x, 0.2, name),
'tanh': tf.nn.tanh(x, name),
'sigmoid': tf.nn.sigmoid(x, name)}
act = activation_dict[FLAGS.activation]
utils.add_activation_summary(act)
return act
示例2: read_dataset
def read_dataset(data_dir):
pickle_filename = "flowers_data.pickle"
pickle_filepath = os.path.join(data_dir, pickle_filename)
if not os.path.exists(pickle_filepath):
utils.maybe_download_and_extract(data_dir, DATA_URL, is_tarfile=True)
flower_folder = os.path.splitext(DATA_URL.split("/")[-1])[0]
result = create_image_lists(os.path.join(data_dir, flower_folder))
print "Training set: %d" % len(result['train'])
print "Test set: %d" % len(result['test'])
print "Validation set: %d" % len(result['validation'])
print "Pickling ..."
with open(pickle_filepath, 'wb') as f:
pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
else:
print "Found pickle file!"
with open(pickle_filepath, 'rb') as f:
result = pickle.load(f)
training_images = result['train']
testing_images = result['test']
validation_images = result['validation']
del result
print ("Training: %d, Validation: %d, Test: %d" % (
len(training_images), len(validation_images), len(testing_images)))
return training_images, testing_images, validation_images
示例3: vgg_net
def vgg_net(weights, image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3' # 'conv3_4', 'relu3_4', 'pool3',
# 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
# 'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
#
# 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
# 'relu5_3', 'conv5_4', 'relu5_4'
)
net = {}
current = image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = utils.conv2d_basic(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = utils.avg_pool_2x2(current)
net[name] = current
assert len(net) == len(layers)
return net
示例4: inference_simple
def inference_simple(dataset):
with tf.name_scope("conv1") as scope:
W1 = utils.weight_variable([5, 5, 1, 32], name="W1")
b1 = utils.bias_variable([32], name="b1")
tf.histogram_summary("W1", W1)
tf.histogram_summary("b1", b1)
h_conv1 = tf.nn.relu(utils.conv2d_basic(dataset, W1, b1), name="h_conv1")
h_pool1 = utils.max_pool_2x2(h_conv1)
with tf.name_scope("conv2") as scope:
W2 = utils.weight_variable([3, 3, 32, 64], name="W2")
b2 = utils.bias_variable([64], name="b2")
tf.histogram_summary("W2", W2)
tf.histogram_summary("b2", b2)
h_conv2 = tf.nn.relu(utils.conv2d_basic(h_pool1, W2, b2), name="h_conv2")
h_pool2 = utils.max_pool_2x2(h_conv2)
with tf.name_scope("fc") as scope:
image_size = IMAGE_SIZE // 4
h_flat = tf.reshape(h_pool2, [-1, image_size * image_size * 64])
W_fc = utils.weight_variable([image_size * image_size * 64, NUM_LABELS], name="W_fc")
b_fc = utils.bias_variable([NUM_LABELS], name="b_fc")
tf.histogram_summary("W_fc", W_fc)
tf.histogram_summary("b_fc", b_fc)
pred = tf.matmul(h_flat, W_fc) + b_fc
return pred
示例5: train
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
return optimizer.apply_gradients(grads)
示例6: main
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.model_dir, DATA_URL)
model_data = get_model_data()
model_params = {}
mean = model_data['normalization'][0][0][0]
model_params["mean_pixel"] = np.mean(mean, axis=(0, 1))
model_params["weights"] = np.squeeze(model_data['layers'])
visualize_layer(model_params)
示例7: visualize
def visualize():
count = 20
z_feed = np.random.uniform(-1.0, 1.0, size=(count, FLAGS.z_dim)).astype(np.float32)
# z_feed = np.tile(np.random.uniform(-1.0, 1.0, size=(1, FLAGS.z_dim)).astype(np.float32), (count, 1))
# z_feed[:, 25] = sorted(10.0 * np.random.randn(count))
image = sess.run(gen_images, feed_dict={z_vec: z_feed, train_phase: False})
for iii in xrange(count):
print(image.shape)
utils.save_image(image[iii, :, :, :], IMAGE_SIZE, FLAGS.logs_dir, name=str(iii))
print("Saving image" + str(iii))
示例8: main
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.model_dir, DATA_URL)
model_data = get_model_data()
dream_image = get_image(FLAGS.image_path)
# dream_image = np.random.uniform(size=(1, 300, 300, 3)) + 100.0
print dream_image.shape
model_params = {}
mean = model_data['normalization'][0][0][0]
model_params["mean_pixel"] = np.mean(mean, axis=(0, 1))
model_params["weights"] = np.squeeze(model_data['layers'])
deepdream_image(model_params, dream_image, no_of_octave=3)
示例9: main
def main(argv=None):
print "Reading notMNIST data..."
train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels = \
read_notMNIST.get_notMNISTData(FLAGS.data_dir)
print "Setting up tf model..."
dataset = tf.placeholder(tf.float32, shape=(None, IMAGE_SIZE * IMAGE_SIZE))
labels = tf.placeholder(tf.float32, shape=(None, NUMBER_OF_CLASSES))
global_step = tf.Variable(0, trainable=False)
logits = inference_fully_convolutional(dataset)
for var in tf.trainable_variables():
utils.add_to_regularization_and_summary(var)
loss_val = loss(logits, labels)
train_op = train(loss_val, global_step)
summary_op = tf.merge_all_summaries()
with tf.Session() as sess:
print "Setting up summary and saver..."
sess.run(tf.initialize_all_variables())
summary_writer = tf.train.SummaryWriter(FLAGS.logs_dir, sess.graph)
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print "Model restored!"
if FLAGS.mode == "train":
for step in xrange(MAX_ITERATIONS):
offset = (step * BATCH_SIZE) % (train_labels.shape[0] - BATCH_SIZE)
batch_data = train_dataset[offset:(offset + BATCH_SIZE), :]
batch_labels = train_labels[offset:(offset + BATCH_SIZE), :]
feed_dict = {dataset: batch_data, labels: batch_labels}
if step % 100 == 0:
l, summary_str = sess.run([loss_val, summary_op], feed_dict=feed_dict)
print "Step: %d Mini batch loss: %g"%(step, l)
summary_writer.add_summary(summary_str, step)
if step % 1000 == 0:
valid_loss = sess.run(loss_val, feed_dict={dataset:valid_dataset, labels:valid_labels})
print "-- Validation loss %g" % valid_loss
saver.save(sess, FLAGS.logs_dir +"model.ckpt", global_step=step)
sess.run(train_op, feed_dict=feed_dict)
test_loss = sess.run(loss_val, feed_dict={dataset:test_dataset, labels:test_labels})
print "Test loss: %g" % test_loss
示例10: read_input
def read_input(model_params):
if FLAGS.mode == "test":
content_image = get_image(FLAGS.test_image_path)
print content_image.shape
processed_content = utils.process_image(content_image, model_params["mean_pixel"]).astype(np.float32) / 255.0
return processed_content, None
else:
data_directory = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
filenames = [os.path.join(data_directory, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
filename_queue = tf.train.string_input_producer(filenames)
print "Reading cifar10 data"
read_input = read_cifar10(model_params, filename_queue)
num_preprocess_threads = 8
min_queue_examples = int(0.4 * NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN)
print "Shuffling train batch"
input_images, input_content_features = tf.train.shuffle_batch([read_input.image, read_input.content_features],
batch_size=FLAGS.batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
return input_images, input_content_features
示例11: read_cifar10
def read_cifar10(model_params, filename_queue):
class CIFAR10Record(object):
pass
result = CIFAR10Record()
label_bytes = 1 # 2 for CIFAR-100
result.height = IMAGE_SIZE
result.width = IMAGE_SIZE
result.depth = 3
image_bytes = result.height * result.width * result.depth
record_bytes = label_bytes + image_bytes
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.uint8)
depth_major = tf.cast(tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
[result.depth, result.height, result.width]), tf.float32)
result.image = utils.process_image(tf.transpose(depth_major, [1, 2, 0]), model_params['mean_pixel']) / 255.0
extended_image = 255 * tf.reshape(result.image, (1, result.height, result.width, result.depth))
result.net = vgg_net(model_params["weights"], extended_image)
content_feature = result.net[CONTENT_LAYER]
result.content_features = content_feature
return result
示例12: inference
def inference(data, keep_prob):
with tf.variable_scope("inference") as scope:
weight_variable_size = IMAGE_SIZE * IMAGE_SIZE * 50 + 50 * 50 * 3 + 50 * 10
bias_variable_size = 4 * 50 + 10
print (weight_variable_size + bias_variable_size)
variable = utils.weight_variable([weight_variable_size + bias_variable_size], name="variables")
weight_variable = tf.slice(variable, [0], [weight_variable_size], name="weights")
bias_variable = tf.slice(variable, [weight_variable_size], [bias_variable_size], name="biases")
weight_offset = 0
bias_offset = 0
W_1 = tf.slice(weight_variable, [weight_offset], [IMAGE_SIZE * IMAGE_SIZE * 50], name="W_1")
b_1 = tf.slice(bias_variable, [bias_offset], [50], name="b_1")
h_1_relu = tf.nn.relu(tf.matmul(data, tf.reshape(W_1, [IMAGE_SIZE * IMAGE_SIZE, 50])) + b_1, name='h_1')
h_1 = tf.nn.dropout(h_1_relu, keep_prob)
utils.add_activation_summary(h_1)
weight_offset += IMAGE_SIZE * IMAGE_SIZE * 50
bias_offset += 50
W_2 = tf.slice(weight_variable, [weight_offset], [50 * 50], name="W_2")
b_2 = tf.slice(bias_variable, [bias_offset], [50], name="b_2")
h_2_relu = tf.nn.relu(tf.matmul(h_1, tf.reshape(W_2, [50, 50])) + b_2, name='h_2')
h_2 = tf.nn.dropout(h_2_relu, keep_prob)
utils.add_activation_summary(h_2)
weight_offset += 50 * 50
bias_offset += 50
W_3 = tf.slice(weight_variable, [weight_offset], [50 * 50], name="W_3")
b_3 = tf.slice(bias_variable, [bias_offset], [50], name="b_3")
h_3_relu = tf.nn.relu(tf.matmul(h_2, tf.reshape(W_3, [50, 50])) + b_3, name='h_3')
h_3 = tf.nn.dropout(h_3_relu, keep_prob)
utils.add_activation_summary(h_3)
weight_offset += 50 * 50
bias_offset += 50
W_4 = tf.slice(weight_variable, [weight_offset], [50 * 50], name="W_4")
b_4 = tf.slice(bias_variable, [bias_offset], [50], name="b_4")
h_4_relu = tf.nn.relu(tf.matmul(h_3, tf.reshape(W_4, [50, 50])) + b_4, name='h_4')
h_4 = tf.nn.dropout(h_4_relu, keep_prob)
utils.add_activation_summary(h_4)
weight_offset += 50 * 50
bias_offset += 50
W_final = tf.slice(weight_variable, [weight_offset], [50 * 10], name="W_final")
b_final = tf.slice(bias_variable, [bias_offset], [10], name="b_final")
pred = tf.nn.softmax(tf.matmul(h_4, tf.reshape(W_final, [50, 10])) + b_final, name='h_final')
# utils.add_activation_summary(pred)
return pred
示例13: deepdream_image
def deepdream_image(model_params, image, octave_scale=1.4, no_of_octave=4):
filename = "%s_deepdream_%s.jpg" % (os.path.splitext((FLAGS.image_path.split("/")[-1]))[0], DREAM_LAYER)
processed_image = utils.process_image(image, model_params["mean_pixel"]).astype(np.float32)
input_image = tf.placeholder(tf.float32)
dream_net = vgg_net(model_params["weights"], input_image)
def calc_grad_tiled(img, gradient, tile_size=512):
sz = tile_size
h, w = img.shape[1:3]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 2), sy, 1)
gradient_val = np.zeros_like(img)
for y in xrange(0, max(h - sz // 2, sz), sz):
for x in xrange(0, max(w - sz // 2, sz), sz):
sub_img = img_shift[:, y:y + sz, x:x + sz]
# print sub_img.shape
g = sess.run(gradient, {input_image: sub_img})
gradient_val[:, y:y + sz, x:x + sz] = g
return np.roll(np.roll(gradient_val, -sx, 2), -sy, 1)
step = LEARNING_RATE
feature = DREAM_FEATURE
with tf.Session() as sess:
dream_layer_features = dream_net[DREAM_LAYER][:, :, :, feature]
feature_score = tf.reduce_mean(dream_layer_features)
grad_op = tf.gradients(feature_score, input_image)[0]
dummy_image = processed_image.copy()+100.0
for itr in xrange(5):
octaves = []
for i in xrange(no_of_octave - 1):
hw = dummy_image.shape[1:3]
lo = resize_image(dummy_image, np.int32(np.float32(hw) / octave_scale))
hi = dummy_image - resize_image(dummy_image, hw)
dummy_image = lo
octaves.append(hi)
for octave in xrange(no_of_octave):
if octave > 0:
hi = octaves[-octave]
dummy_image = resize_image(dummy_image, hi.shape[1:3]) + hi
for i in xrange(MAX_ITERATIONS):
grad = calc_grad_tiled(dummy_image, grad_op)
dummy_image += grad * (step / (np.abs(grad).mean() + 1e-8))
print '.',
print "."
# step /= 2.0 # halfing step size every itr
feature += 15
temp_file = "%d_%s" % (itr, filename)
# print dummy_image.shape
output = dummy_image.reshape(processed_image.shape[1:]) - 100.0
save_image(os.path.join(FLAGS.logs_dir, "checkpoints", temp_file), output, model_params["mean_pixel"])
示例14: read_dataset
def read_dataset(data_dir):
pickle_filename = "MITSceneParsing.pickle"
pickle_filepath = os.path.join(data_dir, pickle_filename)
if not os.path.exists(pickle_filepath):
utils.maybe_download_and_extract(data_dir, DATA_URL, is_zipfile=True)
SceneParsing_folder = os.path.splitext(DATA_URL.split("/")[-1])[0]
result = create_image_lists(os.path.join(data_dir, SceneParsing_folder))
print ("Pickling ...")
with open(pickle_filepath, 'wb') as f:
pickle.dump(result, f, pickle.HIGHEST_PROTOCOL)
else:
print ("Found pickle file!")
with open(pickle_filepath, 'rb') as f:
result = pickle.load(f)
training_records = result['training']
validation_records = result['validation']
del result
return training_records, validation_records
示例15: main
def main(argv=None):
utils.maybe_download_and_extract(FLAGS.data_dir, DATA_URL, is_tarfile=True)
print "Setting up model..."
global_step = tf.Variable(0, trainable=False)
gray, color = inputs()
pred = 255 * inference(gray) + 128
tf.image_summary("Gray", gray, max_images=1)
tf.image_summary("Ground_truth", color, max_images=1)
tf.image_summary("Prediction", pred, max_images=1)
image_loss = loss(pred, color)
train_op = train(image_loss, global_step)
summary_op = tf.merge_all_summaries()
with tf.Session() as sess:
print "Setting up summary writer, queue, saver..."
sess.run(tf.initialize_all_variables())
summary_writer = tf.train.SummaryWriter(FLAGS.logs_dir, sess.graph)
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
print "Restoring model from checkpoint..."
saver.restore(sess, ckpt.model_checkpoint_path)
tf.train.start_queue_runners(sess)
for step in xrange(MAX_ITERATIONS):
if step % 400 == 0:
loss_val, summary_str = sess.run([image_loss, summary_op])
print "Step %d, Loss: %g" % (step, loss_val)
summary_writer.add_summary(summary_str, global_step=step)
if step % 1000 == 0:
saver.save(sess, FLAGS.logs_dir + "model.ckpt", global_step=step)
print "%s" % datetime.now()
sess.run(train_op)