本文整理匯總了Python中JLA_library.survey方法的典型用法代碼示例。如果您正苦於以下問題:Python JLA_library.survey方法的具體用法?Python JLA_library.survey怎麽用?Python JLA_library.survey使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類JLA_library
的用法示例。
在下文中一共展示了JLA_library.survey方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_diag
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import survey [as 別名]
def compute_diag(SNe):
lens = 0.055
#c = 3e5 #km/s
sigma_lens = 0.055 * SNe['zcmb']
sigma_pecvel = 5*8.33e-4/(np.log(10) *SNe['zcmb']) # See eq. 13 in B14
sigma_coh = np.array([coh_dict[JLA.survey(sn)] for sn in SNe])
return np.column_stack((sigma_coh, sigma_lens, sigma_pecvel))
示例2: apply
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import survey [as 別名]
def apply(self, SNe, to_write=False):
""" correction to SNe"""
z_value, z_err = [], []
for sn in SNe:
c = SkyCoord(sn['ra']*u.degree, sn['dec']*u.degree)
gc = c.galactic
vpec = self.lookup_velocity(sn['zhel'], gc.l.degree, gc.b.degree)
z_c = self.correct_redshift(sn['zhel'], vpec, gc.l.degree, gc.b.degree)
z_plus = self.correct_redshift(sn['zhel'], self.r_plus*vpec,
gc.l.degree, gc.b.degree)
z_minus = self.correct_redshift(sn['zhel'], self.r_minus*vpec,
gc.l.degree, gc.b.degree)
if JLA.survey(sn) == 'nearby':
z_value.append(z_c)
z_err.append(np.mean([z_plus - z_c, z_c - z_minus]))
else:
z_value.append(sn['zcmb'])
z_err.append(0)
if to_write:
np.savetxt('z_CMB_corrected.txt', np.array(z_value))
return z_value, z_err
示例3: compute_bias
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import survey [as 別名]
#.........這裏部分代碼省略.........
dtype='S10,f8,f8,f8',
names=['sample', 'redshift', 'bias', 'e_bias'])
if options.plot:
fig=plt.figure()
ax=fig.add_subplot(111)
colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'}
for sample in numpy.unique(bias['sample']):
selection=(bias['sample']==sample)
guess=[0,0,0]
print bias[selection]
plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
bias[selection]['redshift'],
bias[selection]['e_bias'],
'poly'), full_output=1)
if plsq[4] in [1,2,3,4]:
print 'Solution for %s found' % (sample)
if options.plot:
ax.errorbar(bias[selection]['redshift'],
bias[selection]['bias'],
yerr=bias[selection]['e_bias'],
ecolor='k',
color=colour[sample],
fmt='o',
label=sample)
z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
ax.plot(z,poly(z,plsq[0]),color=colour[sample])
# For each SNe, determine the uncerainty in the correction. We use the approach descibed in
# https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
# Compute the chi-sq.
chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
dof=selection.sum()-len(guess)
print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)
alpha=0.315 # Confidence interval is 100 * (1-alpha)
# Compute the upper alpha/2 value for the student t distribution with dof
thresh=t.ppf((1-alpha/2.0), dof)
if options.plot and sample!='nearby':
# The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample
upper_curve=[]
lower_curve=[]
for x in z:
vect=numpy.matrix([1,x,x**2.])
offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
upper_curve.append(poly(x,plsq[0])+offset)
lower_curve.append(poly(x,plsq[0])-offset)
ax.plot(z,lower_curve,'--',color=colour[sample])
ax.plot(z,upper_curve,'--',color=colour[sample])
# Compute the error in the bias
# We increase the absolute value
# In other words, if the bias is negative, we subtract the error to make it even more negative
# This is to get the correct sign in the off diagonal elements
# We assume 100% correlation between SNe
for i,SN in enumerate(SNe):
if SN['zcmb'] > 0:
redshift = SN['zcmb']
else:
redshift = SN['zhel']
if JLA.survey(SN) == sample:
# For the nearby SNe, the uncertainty in the bias correction is the bias correction itself
if sample=='nearby':
SNe['e_bias'][i]=poly(redshift,plsq[0])
#print SN['name'],redshift, SNe['e_bias'][i]
else:
vect = numpy.matrix([1,redshift,redshift**2.])
if poly(redshift,plsq[0]) > 0:
sign = 1
else:
sign = -1
SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
# We are getting some unrealistcally large values
date = JLA.get_date()
if options.plot:
ax.legend()
plt.savefig('C_bias_%s.png' % (date))
plt.close()
# Compute the bias matrix
#
Zero=numpy.zeros(nSNe)
H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F')
C_bias = numpy.matrix(H).T * numpy.matrix(H)
fits.writeto('C_bias_%s.fits' % (date),C_bias,clobber=True)
return None