當前位置: 首頁>>代碼示例>>Python>>正文


Python JLA_library.smooth方法代碼示例

本文整理匯總了Python中JLA_library.smooth方法的典型用法代碼示例。如果您正苦於以下問題:Python JLA_library.smooth方法的具體用法?Python JLA_library.smooth怎麽用?Python JLA_library.smooth使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在JLA_library的用法示例。


在下文中一共展示了JLA_library.smooth方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_Ccal

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import smooth [as 別名]

#.........這裏部分代碼省略.........
        except:
            pass

        #firstModel=True
        print 'Examining SN #%d %s' % (i+1,SN['id'])

        # Set up the number of processes
        pool = mp.Pool(processes=int(options.processes))
        # runSALT is the program that does the lightcurve fitting
        results = [pool.apply(runSALT, args=(SALTpath,
                                             SALTmodel,
                                             salt_prefix,
                                             SN['lc'],
                                             SN['id'])) for SALTmodel in SALTmodels]
        for result in results[1:]:
            # The first model is the unperturbed model
            dM,dX,dC=JLA.computeOffsets(results[0],result)
            J.extend([dM,dX,dC])
        pool.close() # This prevents to many open files

        if firstSN:
            J_new=numpy.array(J).reshape(nSALTmodels,3).T
            firstSN=False
        else:
            J_new=numpy.concatenate((J_new,numpy.array(J).reshape(nSALTmodels,3).T),axis=0)

        log.write('%d rows %d columns\n' % (J_new.shape[0],J_new.shape[1]))

    log.close()

    # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix
    # J=jacobian

    J_smoothed=numpy.array(J_new)*0.0
    J=J_new

    # We need to concatenate the different samples ...
    
    if options.Plot:
        try:
            os.mkdir('figures')
        except:
            pass               

    nPoints={'SNLS':11,'SDSS':11,'nearby':11,'high-z':11,'DES':11} 
    #sampleList=['nearby','DES']
    sampleList=params['smoothList'].split(',')
    if options.smoothed:
        # We smooth the Jacobian 
        # We roughly follow the method descibed in the footnote of p13 of B14
        for sample in sampleList:
            selection=(SNeList['survey']==sample)
            J_sample=J[numpy.repeat(selection,3)]

            for sys in range(nSALTmodels):
                # We need to convert to a numpy array
                # There is probably a better way
                redshifts=numpy.array([z for z in SNeList[selection]['z']])
                derivatives_mag=J_sample[0::3][:,sys]  # [0::3] = [0,3,6 ...] Every 3rd one
                #print redshifts.shape, derivatives_mag.shape, nPoints[sample]
                forPlotting_mag,res_mag=JLA.smooth(redshifts,derivatives_mag,nPoints[sample])
                derivatives_x1=J_sample[1::3][:,sys]
                forPlotting_x1,res_x1=JLA.smooth(redshifts,derivatives_x1,nPoints[sample])
                derivatives_c=J_sample[2::3][:,sys]
                forPlotting_c,res_c=JLA.smooth(redshifts,derivatives_c,nPoints[sample])
開發者ID:dessn,項目名稱:Covariance,代碼行數:69,代碼來源:jla_compute_Ccal.py


注:本文中的JLA_library.smooth方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。