本文整理匯總了Python中JLA_library.reindex_SNe方法的典型用法代碼示例。如果您正苦於以下問題:Python JLA_library.reindex_SNe方法的具體用法?Python JLA_library.reindex_SNe怎麽用?Python JLA_library.reindex_SNe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類JLA_library
的用法示例。
在下文中一共展示了JLA_library.reindex_SNe方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_model
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_model(options):
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
from astropy.table import Table
from astropy.cosmology import FlatwCDM
from scipy.interpolate import interp1d
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
print 'There are %d SNe' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
redshift = SNe['zcmb']
replace=(redshift < 0)
# For SNe that do not have the CMB redshift
redshift[replace]=SNe[replace]['zhel']
print len(redshift)
if options.raw:
# Data from the bottom left hand figure of Mosher et al. 2014.
# This is option ii) that is descibed above
offsets=Table.read(JLA.get_full_path(params['modelOffset']),format='ascii.csv')
Delta_M=interp1d(offsets['z'], offsets['offset'], kind='linear',bounds_error=False,fill_value='extrapolate')(redshift)
else:
Om_0=0.303 # JLA value in the wCDM model
cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))
# Build the covariance matrix. Note that only magnitudes are affected
Zero=numpy.zeros(nSNe)
H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
C_model=numpy.matrix(H).T * numpy.matrix(H)
date = JLA.get_date()
fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True)
return None
示例2: compute_Cstat
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_Cstat(options):
"""Python program to compute C_stat
"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import JLA_library as JLA
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# ----------- Read in the data --------------------------
print 'There are %d SNe in the sample' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe=SNe[indices]
C_stat=numpy.zeros(9*nSNe*nSNe).reshape(3*nSNe,3*nSNe)
for i,SN in enumerate(SNe):
cov=numpy.zeros(9).reshape(3,3)
cov[0,0]=SN['dmb']**2.
cov[1,1]=SN['dx1']**2.
cov[2,2]=SN['dcolor']**2.
cov[0,1]=SN['cov_m_s']
cov[0,2]=SN['cov_m_c']
cov[1,2]=SN['cov_s_c']
# symmetrise
cov=cov+cov.T-numpy.diag(cov.diagonal())
C_stat[i*3:i*3+3,i*3:i*3+3]=cov
# ----------- Read in the base matrix computed using salt2_stat.cc ------------
if options.base!=None:
C_stat+=fits.getdata(options.base)
date = JLA.get_date()
fits.writeto('C_stat_%s.fits' % date,C_stat,clobber=True)
return
示例3: compute_Ccal
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_Ccal(options):
"""Python program to compute Ccal
"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import multiprocessing as mp
import matplotlib.pyplot as plt
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
try:
salt_prefix = params['saltPrefix']
except KeyError:
salt_prefix = ''
# ---------- Read in the SNe list -------------------------
SNeList = Table(numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S100',
names=['id', 'lc']))
for i,SN in enumerate(SNeList):
SNeList['id'][i]=SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')
# ---------- Read in the SN light curve fits ------------
# This is used to get the SN redshifts which are used in smoothing the Jacbian
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# Make sure that the order is correct
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
if len(indices) != len(SNeList['id']):
print "We are missing SNe"
exit()
# ----------- Set up the structures to handle the different salt models -------
# The first model is the unperturbed salt model
SALTpath=JLA.get_full_path(params['saltPath'])
SALTmodels=JLA.SALTmodels(SALTpath+'/saltModels.list')
nSALTmodels=len(SALTmodels)-1
print SALTmodels, nSALTmodels
nSNe=len(SNeList)
print 'There are %d SNe in the sample' % (nSNe)
print 'There are %d SALT models' % (nSALTmodels)
# Add a survey column, which we use with the smoothing, and the redshift
SNeList['survey'] = numpy.zeros(nSNe,'a10')
SNeList['z'] = SNe['zhel']
# Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian
# There is rather inelegant
# We still need to allow for Vanina's naming convention when doing this for the photometric sample
for i,SN in enumerate(SNeList):
if SN['id'][0:4]=='SDSS':
SNeList['survey'][i]='SDSS'
elif SN['id'][2:4] in ['D1','D2','D3','D4']:
SNeList['survey'][i]='SNLS'
elif SN['id'][0:3] in ['DES']:
SNeList['survey'][i]='DES'
elif SN['id'][0:2]=='sn':
SNeList['survey'][i]='nearby'
else:
SNeList['survey'][i]='high-z'
# ----------- Read in the calibration matrix -----------------
Cal=fits.getdata(JLA.get_full_path(params['C_kappa']))
# Multiply the ZP submatrix by 100^2, and the two ZP-offset submatrices by 100,
# because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag
size=Cal.shape[0] / 2
Cal[0:size,0:size]=Cal[0:size,0:size]*10000.
Cal[0:size,size:]*=Cal[0:size,size:]*100.
Cal[size:,0:size]=Cal[size:,0:size]*100.
# ------------- Create an area to work in -----------------------
workArea = JLA.get_full_path(options.workArea)
try:
os.mkdir(workArea)
except:
pass
# ----------- The lightcurve fitting --------------------------
firstSN=True
log=open('log.txt','w')
for i,SN in enumerate(SNeList):
J=[]
try:
#.........這裏部分代碼省略.........
示例4: compute_bias
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_bias(options):
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
from astropy.table import Table
from astropy.cosmology import FlatwCDM
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
from scipy.stats import t
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = Table(numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc']))
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
print 'There are %d SNe' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe=SNe[indices]
# Add a column that records the error in the bias correction
SNe['e_bias'] = numpy.zeros(nSNe,'f8')
# Read in the bias correction (see, for example, Fig.5 in B14)
# Fit a polynomial to the data
# Determine the uncertainties
bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']),
skip_header=4,
usecols=(0, 1, 2, 3),
dtype='S10,f8,f8,f8',
names=['sample', 'redshift', 'bias', 'e_bias'])
if options.plot:
fig=plt.figure()
ax=fig.add_subplot(111)
colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'}
for sample in numpy.unique(bias['sample']):
selection=(bias['sample']==sample)
guess=[0,0,0]
print bias[selection]
plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
bias[selection]['redshift'],
bias[selection]['e_bias'],
'poly'), full_output=1)
if plsq[4] in [1,2,3,4]:
print 'Solution for %s found' % (sample)
if options.plot:
ax.errorbar(bias[selection]['redshift'],
bias[selection]['bias'],
yerr=bias[selection]['e_bias'],
ecolor='k',
color=colour[sample],
fmt='o',
label=sample)
z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
ax.plot(z,poly(z,plsq[0]),color=colour[sample])
# For each SNe, determine the uncerainty in the correction. We use the approach descibed in
# https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
# Compute the chi-sq.
chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
dof=selection.sum()-len(guess)
print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)
alpha=0.315 # Confidence interval is 100 * (1-alpha)
# Compute the upper alpha/2 value for the student t distribution with dof
thresh=t.ppf((1-alpha/2.0), dof)
if options.plot and sample!='nearby':
# The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample
upper_curve=[]
lower_curve=[]
for x in z:
vect=numpy.matrix([1,x,x**2.])
offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
upper_curve.append(poly(x,plsq[0])+offset)
lower_curve.append(poly(x,plsq[0])-offset)
ax.plot(z,lower_curve,'--',color=colour[sample])
ax.plot(z,upper_curve,'--',color=colour[sample])
# Compute the error in the bias
#.........這裏部分代碼省略.........
示例5: OptionParser
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
parser = OptionParser()
parser.add_option("-c", "--config", dest="config", default="JLA.config",
help="Parameter file containing the location of various JLA parameters")
parser.add_option("-s", "--SNlist", dest="SNlist",
help="List of SNe")
parser.add_option("-l", "--lcfits", dest="lcfits", default="lightCurveFits",
help="Key in config file pointing to lightcurve fit parameters")
parser.add_option("-o", "--output", dest="output",default="sigma_mu.txt",
help="Output")
(options, args) = parser.parse_args()
params = JLA.build_dictionary(options.config)
lcfile = JLA.get_full_path(params[options.lcfits])
SN_data = Table.read(lcfile, format='fits')
SN_list_long = np.genfromtxt(options.SNlist, usecols=(0), dtype='S30')
SN_list = [name.replace('lc-', '').replace('.list', '').replace('_smp','') for name in SN_list_long]
SN_indices = JLA.reindex_SNe(SN_list, SN_data)
SN_data = SN_data[SN_indices]
sigma_diag = compute_diag(SN_data)
np.savetxt(options.output,sigma_diag, header='coh lens pecvel')
示例6: compute_rel_size
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_rel_size(options):
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import JLA_library as JLA
from astropy.cosmology import FlatwCDM
import os
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ---------- Read in the SNe list -------------------------
SNeList=numpy.genfromtxt(options.SNlist,usecols=(0,2),dtype='S30,S200',names=['id','lc'])
for i,SN in enumerate(SNeList):
SNeList['id'][i]=SNeList['id'][i].replace('lc-','').replace('.list','')
# ----------- Read in the data JLA --------------------------
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
nSNe=len(SNe)
print 'There are %d SNe in this sample' % (nSNe)
# sort it to match the listing in options.SNlist
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe=SNe[indices]
# ---------- Compute the Jacobian ----------------------
# The Jacobian is an m by 4 matrix, where m is the number of SNe
# The columns are ordered in terms of Om, w, alpha and beta
J=[]
JLA_result={'Om':0.303,'w':-1.00,'alpha':0.141,'beta':3.102,'M_B':-19.05}
offset={'Om':0.01,'w':0.01,'alpha':0.01,'beta':0.01,'M_B':0.01}
nFit=4
cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'], w0=JLA_result['w'])
# Varying Om
cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om']+offset['Om'], w0=JLA_result['w'])
J.append(5*numpy.log10((cosmo1.luminosity_distance(SNe['zcmb'])/cosmo2.luminosity_distance(SNe['zcmb']))[:,0]))
# varying alpha
J.append(1.0*offset['alpha']*SNe['x1'][:,0])
# varying beta
J.append(-1.0*offset['beta']*SNe['color'][:,0])
# varying M_B
J.append(offset['M_B']*numpy.ones(nSNe))
J = numpy.matrix(numpy.concatenate((J)).reshape(nSNe,nFit,order='F') * 100.)
# Set up the covariance matrices
systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat']
covmatrices = {'bias':params['bias'],
'cal':params['cal'],
'host':params['host'],
'dust':params['dust'],
'model':params['model'],
'nonia':params['nonia'],
'pecvel':params['pecvel'],
'stat':params['stat']}
if options.type in systematic_terms:
print "Using %s for the %s term" % (options.name,options.type)
covmatrices[options.type]=options.name
# Combine the matrices to compute the full covariance matrix, and compute its inverse
if options.all:
#read in the user provided matrix, otherwise compute it, and write it out
C=fits.getdata(JLA.get_full_path(params['all']))
else:
C=add_covar_matrices(covmatrices,params['diag'])
date=JLA.get_date()
fits.writeto('C_total_%s.fits' % (date), C, clobber=True)
Cinv=numpy.matrix(C).I
# Construct eta, a 3n vector
eta=numpy.zeros(3*nSNe)
for i,SN in enumerate(SNe):
eta[3*i]=SN['mb']
eta[3*i+1]=SN['x1']
eta[3*i+2]=SN['color']
# Construct A, a n x 3n matrix
A=numpy.zeros(nSNe*3*nSNe).reshape(nSNe,3*nSNe)
for i in range(nSNe):
#.........這裏部分代碼省略.........
示例7: compute_nonIa
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_nonIa(options):
"""Pythom program to compute the systematic unsertainty related to
the contamimation from Ibc SNe"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table, MaskedColumn, vstack
import JLA_library as JLA
# The program computes the covaraince for the spectroscopically confirmed SNe Ia only
# The prgram assumes that the JLA SNe are first in any list
# Taken from C11
# Inputs are the rates of SNe Ia and Ibc, the most likely contaminant
# Ia rate - Perett et al.
# SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
# SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson
# The bright Ibc population
# d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc
# s_bc = 0.25 # The magnitude spread
# f_bright = 0.25 # The fraction of Ibc SN that are bright
# Simulate the characteristics of the SNLS survey
# Apply outlier rejection
# All SNe that pass the cuts are included in the sample
# One then has a mixture of SNe Ia and SNe Ibc
# and the average magnitude at each redshift is biased. This
# is called the raw bias. One multiplies the raw bias by the fraction of
# objects classified as SNe Ia*
# The results are presented in 7 redshift bins defined in table 14 of C11
# We use these results to generate the matrix.
# Only the SNLS SNe in the JLA sample are considered.
# For the photometrically selected sample and other surveys, this will probably be different
# JLA compute this for the SNLS sample only
# We assume that the redshift in this table refers to the left hand edge of each bin
z_bin = numpy.array([0.0, 0.1, 0.26, 0.41, 0.57, 0.72, 0.89, 1.04])
raw_bias = numpy.array([0.0, 0.015, 0.024, 0.024, 0.024, 0.023, 0.026, 0.025])
f_star = numpy.array([0.0, 0.00, 0.06, 0.14, 0.17, 0.24, 0.50, 0.00])
# The covaraiance between SNe Ia in the same redshift bin is fully correlated
# Otherwise, it is uncorrelated
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# Add a bin column and a column that specified of the covariance is non-zero
SNe['bin'] = 0
SNe['eval'] = False
# make order of data (in SNe) match SNeList
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
# Identify the SNLS SNe in the JLA sample
for i, SN in enumerate(SNe):
if SN['source'][0] == 'JLA' and SN['name'][0][2:4] in ['D1', 'D2', 'D3', 'D4']:
SNe['eval'][i] = True
# Work out which redshift bin each SNe belongs to
# In numpy.digitize, the bin number starts at 1, so we subtract 1
SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1
# Build the covariance matrix
C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)
# It is only computes the covariance for the spectroscopically confirmed SNLS SNe
# We assume that covariance between redshift bins is uncorrelated
for i in range(nSNe):
bin1 = SNe['bin'][i]
for j in range(nSNe):
bin2 = SNe['bin'][j]
if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2:
C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])*(raw_bias[bin2] * f_star[bin2])
date = JLA.get_date()
fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True)
#.........這裏部分代碼省略.........
示例8: compute_nonIa
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import reindex_SNe [as 別名]
def compute_nonIa(options):
"""Pythom program to compute the systematic unsertainty related to
the contamimation from Ibc SNe"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table, MaskedColumn, vstack
import JLA_library as JLA
# The program computes the covaraince for the spectroscopically confirmed SNe Ia only
# The prgram assumes that the JLA SNe are first in any list
# Taken from C11
# Inputs are the rates of SNe Ia and Ibc, the most likely contaminant
# Ia rate - Perett et al.
# SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
# SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson
# The bright Ibc population
# d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc
# s_bc = 0.25 # The magnitude spread
# f_bright = 0.25 # The fraction of Ibc SN that are bright
# Simulate the characteristics of the SNLS survey
# Apply outlier rejection
# All SNe that pass the cuts are included in the sample
# One then has a mixture of SNe Ia and SNe Ibc
# and the average magnitude at each redshift is biased. This
# is called the raw bias. One multiplies the raw bias by the fraction of
# objects classified as SNe Ia*
# The results are presented in 7 redshift bins defined in table 14 of C11
# We use these results to generate the matrix.
# Only the SNLS SNe in the JLA sample are considered.
# For the photometrically selected sample and other surveys, this will probably be different
# JLA compute this for the SNLS sample only
# We assume that the redshift in this table refers to the left hand edge of each bin
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
data=numpy.genfromtxt(JLA.get_full_path(params['classification']),comments="#",usecols=(0,1,2),dtype=['float','float','float'],names=['redshift','raw_bias','fraction'])
z_bin=data['redshift']
raw_bias=data['raw_bias']
f_star=data['fraction']
# The covaraiance between SNe Ia in the same redshift bin is fully correlated
# Otherwise, it is uncorrelated
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# Add a bin column and a column that specifies if the covariance needs to be computed
SNe['bin'] = 0
SNe['eval'] = False
# make the order of data (in SNe) match SNeList
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
nSNe = len(SNe)
# Identify the SNLS SNe in the JLA sample
# We use the source and the name to decide if we want to add corrections for non-Ia contamination
# Identify the DESS SNe in the DES sample.
for i, SN in enumerate(SNe):
try:
# If the source keyword exists
if (SN['source'] == 'JLA' or SN['source'] == 'SNLS_spec') and SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4']:
SNe['eval'][i] = True
elif (SN['source']== 'SNLS_photo') and (SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4'] or (SN['name'][0:2] in ['D1', 'D2', 'D3', 'D4'])):
SNe['eval'][i] = True
except:
# If the source keyword does not exist
if SN['name'][0:3]=="DES":
SNe['eval'][i] = True
print list(SNe['eval']).count(True)
# Work out which redshift bin each SNe belongs to
# In numpy.digitize, the bin number starts at 1, so we subtract 1 -- need to check...
SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1
# Build the covariance matrix
C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)
#.........這裏部分代碼省略.........