本文整理匯總了Python中JLA_library.build_dictionary方法的典型用法代碼示例。如果您正苦於以下問題:Python JLA_library.build_dictionary方法的具體用法?Python JLA_library.build_dictionary怎麽用?Python JLA_library.build_dictionary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類JLA_library
的用法示例。
在下文中一共展示了JLA_library.build_dictionary方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_date_of_max
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_date_of_max(options):
import numpy
from astropy.table import Table
import JLA_library as JLA
params=JLA.build_dictionary(options.config)
# ----------- Read in the configuration file ------------
lightCurveFits=JLA.get_full_path(params['lightCurveFits'])
lightCurves=JLA.get_full_path(params['lightCurves'])
adjlightCurves=JLA.get_full_path(params['adjLightCurves'])
# --------- Read in the list of SNe ---------------------
SNe = Table.read(lightCurveFits, format='fits')
nSNe=len(SNe)
print 'There are %d SNe' % (nSNe)
# ----------- The lightcurve fitting -------------------
J=[]
for SN in SNe:
SNfile='lc-'+SN['name']+'.list'
#print 'Examining %s' % SN['name']
inputFile=lightCurves+SNfile
outputFile=adjlightCurves+SNfile
# If needed refit the lightcurve and insert the date of maximum into the input file
JLA.insertDateOfMax(SN['name'].strip(),inputFile,outputFile,options.force)
return
示例2: compute_model
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_model(options):
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
from astropy.table import Table
from astropy.cosmology import FlatwCDM
from scipy.interpolate import interp1d
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
print 'There are %d SNe' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
redshift = SNe['zcmb']
replace=(redshift < 0)
# For SNe that do not have the CMB redshift
redshift[replace]=SNe[replace]['zhel']
print len(redshift)
if options.raw:
# Data from the bottom left hand figure of Mosher et al. 2014.
# This is option ii) that is descibed above
offsets=Table.read(JLA.get_full_path(params['modelOffset']),format='ascii.csv')
Delta_M=interp1d(offsets['z'], offsets['offset'], kind='linear',bounds_error=False,fill_value='extrapolate')(redshift)
else:
Om_0=0.303 # JLA value in the wCDM model
cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))
# Build the covariance matrix. Note that only magnitudes are affected
Zero=numpy.zeros(nSNe)
H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
C_model=numpy.matrix(H).T * numpy.matrix(H)
date = JLA.get_date()
fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True)
return None
示例3: compute_Cstat
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_Cstat(options):
"""Python program to compute C_stat
"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import JLA_library as JLA
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# ----------- Read in the data --------------------------
print 'There are %d SNe in the sample' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe=SNe[indices]
C_stat=numpy.zeros(9*nSNe*nSNe).reshape(3*nSNe,3*nSNe)
for i,SN in enumerate(SNe):
cov=numpy.zeros(9).reshape(3,3)
cov[0,0]=SN['dmb']**2.
cov[1,1]=SN['dx1']**2.
cov[2,2]=SN['dcolor']**2.
cov[0,1]=SN['cov_m_s']
cov[0,2]=SN['cov_m_c']
cov[1,2]=SN['cov_s_c']
# symmetrise
cov=cov+cov.T-numpy.diag(cov.diagonal())
C_stat[i*3:i*3+3,i*3:i*3+3]=cov
# ----------- Read in the base matrix computed using salt2_stat.cc ------------
if options.base!=None:
C_stat+=fits.getdata(options.base)
date = JLA.get_date()
fits.writeto('C_stat_%s.fits' % date,C_stat,clobber=True)
return
示例4: compute_dust
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_dust(options):
"""Python program to compute C_dust
"""
import numpy
import astropy.io.fits as fits
import os
import JLA_library as JLA
# ---------- Read in the SNe list -------------------------
SNelist = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S110',
names=['id', 'lc'])
for i, SN in enumerate(SNelist):
SNelist['id'][i] = SNelist['id'][i].replace('lc-','').replace('.list','')
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
try:
salt_path = JLA.get_full_path(params['defsaltModel'])
except KeyError:
salt_path = ''
# ----------- The lightcurve fitting -------------------
# Compute the offset between the nominal value of the extinciton
# and the adjusted value
# We first compute the difference in light curve fit parameters for E(B-V) * (1+offset)
offset = 0.1
j = []
for SN in SNelist:
inputFile = SN['lc']
print 'Fitting %s ' % (SN['lc'])
workArea = JLA.get_full_path(options.workArea)
dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset, workArea, salt_path)
j.extend([dm, dx1, dc])
# But we want to compute the impact of an offset that is twice as large, hence the factor of 4 in the expression
# 2017/10/13
# But we want to compute the impact of an offset that is half as large, hence the factor of 4 in the denominator
# cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0
cdust = numpy.matrix(j).T * numpy.matrix(j) / 4.0
date = JLA.get_date()
fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True)
return
示例5: compute_model
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_model(options):
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
from astropy.table import Table
from astropy.cosmology import FlatwCDM
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
print 'There are %d SNe' % (nSNe)
#z=numpy.array([])
#offset=numpy.array([])
Om_0=0.303 # JLA value in the wCDM model
cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
# For the JLA SNe
redshift = SNe['zcmb']
replace=(redshift < 0)
# For the non JLA SNe
redshift[replace]=SNe[replace]['zhel']
Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))
# Build the covariance matrix. Note that only magnitudes are affected
Zero=numpy.zeros(nSNe)
H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
C_model=numpy.matrix(H).T * numpy.matrix(H)
date = JLA.get_date()
fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True)
return None
示例6: convert_lightcurves
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def convert_lightcurves(options):
# Read in the configuration file
# The configuraiton file contains the location of various files
params=JLA.build_dictionary(options.config)
# Read in the extra variance
# This depends on the photometric method. It is lower for SMP
extraVariance=get_extra_variance(JLA.get_full_path(params['extraVariance']),options)
# Read in the extinction values
# A temporary fix as the lightcurves do not currently have it
# Still needed
extinction=get_extinction(JLA.get_full_path(params['extinction']),options)
snanaDir=JLA.get_full_path(params['snanaLightCurves'])
saltDir=JLA.get_full_path(params['adjLightCurves'])
try:
os.mkdir(saltDir)
except:
pass
saltDir=saltDir+'DES/'
try:
os.mkdir(saltDir)
except:
pass
for lightcurve in os.listdir(snanaDir):
if '.dat' in lightcurve:
# Read in the snana file
lc=snanaLightCurve(snanaDir+lightcurve)
lightCurveFile=saltDir+lightcurve.replace('des_real','lc-DES').replace('.dat','.list')
if lc.parameters['TYPE'].split()[0] in ['1','101']: # Is a SN Ia or a SN Ia?
print lightcurve, lightCurveFile
lc.clean() # Remove bad photometry
lc.addNoise(extraVariance) # Add additional variance to the lightcurve points
# It is not clear if we need to compute a rough date of max before doing the more precise fit
lc.estimateDateOfMax(options) # Sets an approximate date of max for the light curve fitting done below.
# Apply cuts
# lc.applySNCuts()
# lc.applySamplingCuts()
lc.write(lightCurveFile,options.format) # Write out the resutlt
lc.fitDateOfMax(lightCurveFile,params) # Get a more precise estimate of the data of peak brightness
lc.updateExtinction(lightCurveFile,extinction) # Temporary code
return
示例7: compute_date_of_max
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_date_of_max(options):
import numpy
from astropy.table import Table
import JLA_library as JLA
params=JLA.build_dictionary(options.config)
# ----------- Correction factor for extinction -----------
# See ApJ 737 103
extinctionFactor=0.86
# ----------- Read in the configuration file ------------
lightCurveFits=JLA.get_full_path(params['lightCurveFits'])
lightCurves=JLA.get_full_path(params['lightCurves'])
adjlightCurves=JLA.get_full_path(params['adjLightCurves'])
# --------- Read in the list of SNe ---------------------
# One can either use an ASCII file with the SN list or a fits file
if options.SNlist == None:
SNe = Table.read(lightCurveFits, format='fits')
else:
# We use the ascii file, which gives the full path name
SNe = Table.read(options.SNlist, format='ascii',names=['name','type','lc'],data_start=0)
nSNe=len(SNe)
print 'There are %d SNe' % (nSNe)
# ----------- The lightcurve fitting -------------------
for SN in SNe:
if options.SNlist == None:
SNfile='lc-'+SN['name']+'.list'
inputFile=lightCurves+SNfile
outputFile=adjlightCurves+SNfile
else:
inputFile=SN['lc']
outputFile=SN['lc'].replace(lightCurves,adjlightCurves)
print 'Examining %s' % SN['name']
# If needed refit the lightcurve and insert the date of maximum into the input file
JLA.insertDateOfMax(SN['name'].strip(),inputFile,outputFile,options.force,params)
# Shouldn't we adjust the extinction first
if options.adjustExtinction:
adjustExtinction(outputFile,extinctionFactor)
return
示例8: compute_ZP
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_ZP(options):
import JLA_library as JLA
import numpy as np
params=JLA.build_dictionary(options.config)
# Read in the standard star
standard=JLA.spectrum(JLA.get_full_path(params['magSys'])+options.standard)
# Read in the filter
filt=JLA.filterCurve(JLA.get_full_path(params['filterDir'])+options.filter)
# Compute the ZP
if options.system=='AB':
print '%s in %s %s %5.3f' % (options.standard,options.filter,options.system,filt.AB(standard))
else:
pass
# print '%s in %s %s %5.3f' % (options.standard,options.filter,options.system,filt.Vega(standard))
return
示例9: create_Models
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def create_Models(options):
import os
params=JLA.build_dictionary(options.config)
try:
os.mkdir(options.output)
except:
print "Directory %s already exists" % (options.output)
# Read in the SALT models that will be kept
SALTmodels=Table.read(options.modelList,format='ascii',names=['ID','Description'],data_start=0)
# Read in the models for which the magnitude will be adjusted
try:
magOffsets=Table.read(options.magOffsetList,format='ascii',names=['Model','Filter','Offset','MagSys'],data_start=1,delimiter='\t',comment='#')
except:
magOffsets=[]
modelList=[]
for model in os.listdir(JLA.get_full_path(options.base)):
if model in SALTmodels['ID']:
print "Copying across %s" % model
modelList.append(model)
shutil.copytree(options.base+'/'+model,options.output+'/'+model)
# Copy salt2 directory to salt2-4
shutil.copytree(options.output+'/'+model+'/snfit_data/salt2',options.output+'/'+model+'/snfit_data/salt2-4')
# Update fitmodel.card
shutil.copy(JLA.get_full_path(params['fitmodel']),options.output+'/'+model+'/snfit_data/fitmodel.card')
# Add the DECam instrument files
shutil.copytree(JLA.get_full_path(params['DES_instrument']),options.output+'/'+model+'/snfit_data/Instruments/DECam')
# Update the Keplercam instrument files
shutil.rmtree(options.output+'/'+model+'/snfit_data/Instruments/Keplercam')
shutil.copytree(JLA.get_full_path(params['CfA_instrument']),options.output+'/'+model+'/snfit_data/Instruments/Keplercam')
## Serious bug - filter and ZP offsets are lost here!
# Add DES magnitude system
shutil.copy(JLA.get_full_path(params['DES_magsys']),options.output+'/'+model+'/snfit_data/MagSys/')
# Update the CfA magnitude system
shutil.copy(JLA.get_full_path(params['CfA_magsys']),options.output+'/'+model+'/snfit_data/MagSys/')
# This is not needed for CSP as the instrument files and magnitude system have not chnaged since JLA
else:
print "Excluding %s" % model
print 'We start with %d models from JLA' % (len(modelList))
# --------- Add new models --------------
newModels=Table.read(options.add,format='ascii', comment='#')
for model in newModels:
# Copy accross the base model
shutil.copytree(JLA.get_full_path(model['baseModel']),options.output+'/'+model['modelNumber'])
print 'Creating %s' % (model['modelNumber'])
# Copy salt2 directory to salt2-4
shutil.copytree(options.output+'/'+model['modelNumber']+'/snfit_data/salt2',options.output+'/'+model['modelNumber']+'/snfit_data/salt2-4')
# Remove the old base instrument, if it exists and replace it with a new one
try:
shutil.rmtree(options.output+'/'+model['modelNumber']+'/snfit_data/'+model['fitmodel'])
except:
pass
shutil.copytree(JLA.get_full_path(model['baseInstrument']+model['fitmodel']),options.output+'/'+model['modelNumber']+'/snfit_data/'+model['fitmodel'])
# Remove the old MagSys directory and replace it with the new one
shutil.rmtree(options.output+'/'+model['modelNumber']+'/snfit_data/MagSys')
shutil.copytree(JLA.get_full_path(model['baseInstrument'])+'MagSys',options.output+'/'+model['modelNumber']+'/snfit_data/MagSys')
# Replace the fitmodel.card it with the new one
shutil.copy(JLA.get_full_path(model['baseInstrument'])+'fitmodel.card',options.output+'/'+model['modelNumber']+'/snfit_data/fitmodel.card')
# Modify filter curve and ZP
if model['Type']=='filt':
offsetFilter(options.output+'/'+model['modelNumber']+'/snfit_data/'+model['fitmodel']+'/'+model['Filter'],model['Instrument'])
else:
offsetZP(options.output+'/'+model['modelNumber']+'/snfit_data/MagSys/'+model['MagSys'],model['ShortName'],model['Instrument'],model['fitmodel'])
# We now update the list of instruments in the newly created surfaces
# We should try to generalise this, as this will become very complex as more instruments are added.
if model['Instrument']=='DECAM':
# Update just the Keplercam instrument files
updateKeplercam(options,params,model)
elif model['Instrument']=='KEPLERCAM':
# Update just the DES instrument files
updateDES(options,params,model)
else: # The case for swope ...
# Update both the Keplercam and DES fles
updateDES(options,params,model)
updateKeplercam(options,params,model)
modelList.append(model['modelNumber'])
# ---- Update magnitude ZPs -----
#for model in magOffsets:
# if numpy.abs(model['Offset']) > 0:
# magSys=options.output+'/'+model['Model']+'/snfit_data/MagSys/'+ model['MagSys']
# offsetZP2(magSys,model['Offset'],model['Filter'])
#.........這裏部分代碼省略.........
示例10: add_covar_matrices
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def add_covar_matrices(options):
"""
Python program that adds the individual covariance matrices into a single matrix
"""
import time
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
params = JLA.build_dictionary(options.config)
# Read in the terms that account for uncertainties in perculiar velocities,
# instrinsic dispersion and, lensing
# Read in the covariance matrices
matrices = []
systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat']
covmatrices = {'bias':params['bias'],
'cal':params['cal'],
'host':params['host'],
'dust':params['dust'],
'model':params['model'],
'nonia':params['nonia'],
'pecvel':params['pecvel'],
'stat':params['stat']}
for term in systematic_terms:
matrices.append(fits.getdata(JLA.get_full_path(covmatrices[term]), 0))
# Add the matrices
size = matrices[0].shape
add = numpy.zeros(size[0]**2.).reshape(size[0], size[0])
for matrix in matrices:
add += matrix
# Write out this matrix. This is C_eta in qe. 13 of B14
date=JLA.get_date()
fits.writeto('C_eta_%s.fits' % (date), add, clobber=True)
# Compute A
nSNe = size[0]/3
jla_results = {'Om':0.303, 'w':-1.027, 'alpha':0.141, 'beta':3.102}
arr = numpy.zeros(nSNe*3*nSNe).reshape(nSNe, 3*nSNe)
for i in range(nSNe):
arr[i, 3*i] = 1.0
arr[i, 3*i+1] = jla_results['alpha']
arr[i, 3*i+2] = -jla_results['beta']
cov = numpy.matrix(arr) * numpy.matrix(add) * numpy.matrix(arr).T
# Add the diagonal terms
sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']),
comments='#',
usecols=(0, 1, 2),
dtype='f8,f8,f8',
names=['sigma_coh', 'sigma_lens', 'sigma_pecvel'])
for i in range(nSNe):
cov[i, i] += sigma['sigma_coh'][i]**2 + \
sigma['sigma_lens'][i]**2 + \
sigma['sigma_pecvel'][i]**2
fits.writeto('C_total_%s.fits' % (date), cov, clobber=True)
return
示例11: compute_Ccal
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_Ccal(options):
"""Python program to compute Ccal
"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import multiprocessing as mp
import matplotlib.pyplot as plt
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
try:
salt_prefix = params['saltPrefix']
except KeyError:
salt_prefix = ''
# ---------- Read in the SNe list -------------------------
SNeList = Table(numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S100',
names=['id', 'lc']))
for i,SN in enumerate(SNeList):
SNeList['id'][i]=SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')
# ---------- Read in the SN light curve fits ------------
# This is used to get the SN redshifts which are used in smoothing the Jacbian
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# Make sure that the order is correct
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
if len(indices) != len(SNeList['id']):
print "We are missing SNe"
exit()
# ----------- Set up the structures to handle the different salt models -------
# The first model is the unperturbed salt model
SALTpath=JLA.get_full_path(params['saltPath'])
SALTmodels=JLA.SALTmodels(SALTpath+'/saltModels.list')
nSALTmodels=len(SALTmodels)-1
print SALTmodels, nSALTmodels
nSNe=len(SNeList)
print 'There are %d SNe in the sample' % (nSNe)
print 'There are %d SALT models' % (nSALTmodels)
# Add a survey column, which we use with the smoothing, and the redshift
SNeList['survey'] = numpy.zeros(nSNe,'a10')
SNeList['z'] = SNe['zhel']
# Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian
# There is rather inelegant
# We still need to allow for Vanina's naming convention when doing this for the photometric sample
for i,SN in enumerate(SNeList):
if SN['id'][0:4]=='SDSS':
SNeList['survey'][i]='SDSS'
elif SN['id'][2:4] in ['D1','D2','D3','D4']:
SNeList['survey'][i]='SNLS'
elif SN['id'][0:3] in ['DES']:
SNeList['survey'][i]='DES'
elif SN['id'][0:2]=='sn':
SNeList['survey'][i]='nearby'
else:
SNeList['survey'][i]='high-z'
# ----------- Read in the calibration matrix -----------------
Cal=fits.getdata(JLA.get_full_path(params['C_kappa']))
# Multiply the ZP submatrix by 100^2, and the two ZP-offset submatrices by 100,
# because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag
size=Cal.shape[0] / 2
Cal[0:size,0:size]=Cal[0:size,0:size]*10000.
Cal[0:size,size:]*=Cal[0:size,size:]*100.
Cal[size:,0:size]=Cal[size:,0:size]*100.
# ------------- Create an area to work in -----------------------
workArea = JLA.get_full_path(options.workArea)
try:
os.mkdir(workArea)
except:
pass
# ----------- The lightcurve fitting --------------------------
firstSN=True
log=open('log.txt','w')
for i,SN in enumerate(SNeList):
J=[]
try:
#.........這裏部分代碼省略.........
示例12: compute_bias
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_bias(options):
import numpy
import astropy.io.fits as fits
import JLA_library as JLA
from astropy.table import Table
from astropy.cosmology import FlatwCDM
from scipy.optimize import leastsq
import matplotlib.pyplot as plt
from scipy.stats import t
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SN ordering ------------------------
SNeList = Table(numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc']))
nSNe = len(SNeList)
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
print 'There are %d SNe' % (nSNe)
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe=SNe[indices]
# Add a column that records the error in the bias correction
SNe['e_bias'] = numpy.zeros(nSNe,'f8')
# Read in the bias correction (see, for example, Fig.5 in B14)
# Fit a polynomial to the data
# Determine the uncertainties
bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']),
skip_header=4,
usecols=(0, 1, 2, 3),
dtype='S10,f8,f8,f8',
names=['sample', 'redshift', 'bias', 'e_bias'])
if options.plot:
fig=plt.figure()
ax=fig.add_subplot(111)
colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'}
for sample in numpy.unique(bias['sample']):
selection=(bias['sample']==sample)
guess=[0,0,0]
print bias[selection]
plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
bias[selection]['redshift'],
bias[selection]['e_bias'],
'poly'), full_output=1)
if plsq[4] in [1,2,3,4]:
print 'Solution for %s found' % (sample)
if options.plot:
ax.errorbar(bias[selection]['redshift'],
bias[selection]['bias'],
yerr=bias[selection]['e_bias'],
ecolor='k',
color=colour[sample],
fmt='o',
label=sample)
z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
ax.plot(z,poly(z,plsq[0]),color=colour[sample])
# For each SNe, determine the uncerainty in the correction. We use the approach descibed in
# https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
# Compute the chi-sq.
chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
dof=selection.sum()-len(guess)
print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)
alpha=0.315 # Confidence interval is 100 * (1-alpha)
# Compute the upper alpha/2 value for the student t distribution with dof
thresh=t.ppf((1-alpha/2.0), dof)
if options.plot and sample!='nearby':
# The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample
upper_curve=[]
lower_curve=[]
for x in z:
vect=numpy.matrix([1,x,x**2.])
offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
upper_curve.append(poly(x,plsq[0])+offset)
lower_curve.append(poly(x,plsq[0])-offset)
ax.plot(z,lower_curve,'--',color=colour[sample])
ax.plot(z,upper_curve,'--',color=colour[sample])
# Compute the error in the bias
#.........這裏部分代碼省略.........
示例13: compareSALTsurfaces
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compareSALTsurfaces(surface):
import matplotlib.pyplot as plt
# ----------- Read in the configuration file ------------
params=JLA.build_dictionary(options.config)
# ----------- Read in the SALT models -------------------
surface1=readSALTsurface(JLA.get_full_path(params['model1'])+'salt2-4/')
# surface2=readSALTsurface(JLA.get_full_path(params['model2'])+'salt2-4/')
surface2=readSALTsurface(JLA.get_full_path(params['model2']))
# ----------- Plot the surfaces ----------------------
fig1=plt.figure()
for axes,x1 in enumerate([-2,0,2]):
ax=fig1.add_subplot(3,1,axes+1)
flux1=surface1.template_0[options.phase]['flux'] + x1 * surface1.template_1[options.phase]['flux']
flux2=surface2.template_0[options.phase]['flux'] + x1 * surface2.template_1[options.phase]['flux']
ax.plot(surface1.template_0[options.phase]['wave'],flux1)
ax.plot(surface2.template_0[options.phase]['wave'],flux2)
ax.text(7000,0.3,"C=0 x1=%2d" % x1)
ax.set_xlabel("wavelength ($\AA$)")
plt.savefig(options.config.replace(".config","_SED.png"))
# ----------- Plot the colour laws ----------------------
# See salt2extinction.cc
# Note the extrapolation
# /*
# ========================================================
# VERSION 1
# ========================================================
# if(l_B<=l<=l_R)
# ext = exp( color * constant * ( alpha*l + params(0)*l^2 + params(1)*l^3 + ... ))
# = exp( color * constant * P(l) )
# alpha = 1-params(0)-params(1)-...
# if(l>l_R)
# ext = exp( color * constant * ( P(l_R) + P'(l_R)*(l-l_R) ) )
# if(l<l_B)
# ext = exp( color * constant * ( P(l_B) + P'(l_B)*(l-l_B) ) )
#
# ========================================================
# */
constant=0.4 * numpy.log(10)
fig3=plt.figure()
ax3=fig3.add_subplot(111)
wave=surface1.template_0[options.phase]['wave']
wave_min=2800.
wave_max=7000.
wave_min_reduced=reduced_lambda(wave_min)
wave_max_reduced=reduced_lambda(wave_max)
# See salt2extinction.h
reduced_wave=reduced_lambda(wave)
# Model 1
alpha1=1.0
# There are 4 co-efficients in the colour law
for coeff in surface1.colour_law['coeff']:
alpha1-=coeff
p1=numpy.zeros(len(reduced_wave))
# Compute derivatives for extrapolations
p1_derivative_min=derivative(alpha1,surface1,wave_min_reduced)
p1_derivative_max=derivative(alpha1,surface1,wave_max_reduced)
# Compute colour law at the points of extrapolations
p1_wave_min_reduced=colourLaw(alpha1,surface1,wave_min_reduced)
p1_wave_max_reduced=colourLaw(alpha1,surface1,wave_max_reduced)
for index,rl in enumerate(reduced_wave):
if rl < wave_min_reduced:
p1[index]=p1_wave_min_reduced+p1_derivative_min*(rl-wave_min_reduced)
elif rl > wave_max_reduced:
p1[index]=p1_wave_max_reduced+p1_derivative_max*(rl-wave_max_reduced)
else:
p1[index]=colourLaw(alpha1,surface1,rl)
# Model 2
alpha2=1.0
for coeff in surface2.colour_law['coeff']:
alpha2-=coeff
p2=numpy.zeros(len(reduced_wave))
# Compute derivatives for extrapolations
p2_derivative_min=derivative(alpha2,surface2,wave_min_reduced)
p2_derivative_max=derivative(alpha2,surface2,wave_max_reduced)
#.........這裏部分代碼省略.........
示例14: compute_nonIa
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_nonIa(options):
"""Pythom program to compute the systematic unsertainty related to
the contamimation from Ibc SNe"""
import numpy
import astropy.io.fits as fits
from astropy.table import Table, MaskedColumn, vstack
import JLA_library as JLA
# The program computes the covaraince for the spectroscopically confirmed SNe Ia only
# The prgram assumes that the JLA SNe are first in any list
# Taken from C11
# Inputs are the rates of SNe Ia and Ibc, the most likely contaminant
# Ia rate - Perett et al.
# SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
# SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson
# The bright Ibc population
# d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc
# s_bc = 0.25 # The magnitude spread
# f_bright = 0.25 # The fraction of Ibc SN that are bright
# Simulate the characteristics of the SNLS survey
# Apply outlier rejection
# All SNe that pass the cuts are included in the sample
# One then has a mixture of SNe Ia and SNe Ibc
# and the average magnitude at each redshift is biased. This
# is called the raw bias. One multiplies the raw bias by the fraction of
# objects classified as SNe Ia*
# The results are presented in 7 redshift bins defined in table 14 of C11
# We use these results to generate the matrix.
# Only the SNLS SNe in the JLA sample are considered.
# For the photometrically selected sample and other surveys, this will probably be different
# JLA compute this for the SNLS sample only
# We assume that the redshift in this table refers to the left hand edge of each bin
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
data=numpy.genfromtxt(JLA.get_full_path(params['classification']),comments="#",usecols=(0,1,2),dtype=['float','float','float'],names=['redshift','raw_bias','fraction'])
z_bin=data['redshift']
raw_bias=data['raw_bias']
f_star=data['fraction']
# The covaraiance between SNe Ia in the same redshift bin is fully correlated
# Otherwise, it is uncorrelated
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')
lcfile = JLA.get_full_path(params[options.lcfits])
SNe = Table.read(lcfile, format='fits')
# Add a bin column and a column that specifies if the covariance needs to be computed
SNe['bin'] = 0
SNe['eval'] = False
# make the order of data (in SNe) match SNeList
indices = JLA.reindex_SNe(SNeList['id'], SNe)
SNe = SNe[indices]
nSNe = len(SNe)
# Identify the SNLS SNe in the JLA sample
# We use the source and the name to decide if we want to add corrections for non-Ia contamination
# Identify the DESS SNe in the DES sample.
for i, SN in enumerate(SNe):
try:
# If the source keyword exists
if (SN['source'] == 'JLA' or SN['source'] == 'SNLS_spec') and SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4']:
SNe['eval'][i] = True
elif (SN['source']== 'SNLS_photo') and (SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4'] or (SN['name'][0:2] in ['D1', 'D2', 'D3', 'D4'])):
SNe['eval'][i] = True
except:
# If the source keyword does not exist
if SN['name'][0:3]=="DES":
SNe['eval'][i] = True
print list(SNe['eval']).count(True)
# Work out which redshift bin each SNe belongs to
# In numpy.digitize, the bin number starts at 1, so we subtract 1 -- need to check...
SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1
# Build the covariance matrix
C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)
#.........這裏部分代碼省略.........
示例15: compute_nonIa_fraction
# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import build_dictionary [as 別名]
def compute_nonIa_fraction(options):
import numpy
import astropy.io.fits as fits
from astropy.table import Table
import JLA_library as JLA
import matplotlib.pyplot as plt
# ----------- Read in the configuration file ------------
params = JLA.build_dictionary(options.config)
# ----------- Read in the SNe ---------------------------
SNeList = numpy.genfromtxt(options.SNlist,
usecols=(0, 2),
dtype='S30,S200',
names=['id', 'lc'])
for i, SN in enumerate(SNeList):
SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
redshift=[]
SNtype=[]
for SN in SNeList:
if 'DES' in SN['lc']:
z,t=getVariable(SN['lc'],['Z_HELIO','SNTYPE'])
redshift.append(float(z))
SNtype.append(int(t))
nSNe=len(redshift)
types=numpy.zeros(nSNe,dtype=[('redshift','f4'),('SNtype','i4')])
types['redshift']=redshift
types['SNtype']=SNtype
print "There are %d SNe" % (nSNe)
bins=numpy.array([0.00,0.10,0.26,0.41,0.57,0.72,0.89,1.04])
bias=numpy.array([0.00,0.015,0.024,0.024,0.024,0.023,0.026,0.025])
selection=(types['SNtype']==1)
SNeIa=numpy.histogram(types[selection]['redshift'],bins)
SNeIa_total=numpy.histogram(types['redshift'],bins)
print SNeIa, SNeIa_total
if options.plot:
fig=plt.figure()
ax=fig.add_subplot(111)
ax.hist(types[selection]['redshift'],bins=bins, histtype='step', color='b')
ax.hist(types['redshift'],bins=bins, histtype='step', color='g')
plt.show()
if nSNe > SNeIa_total[0].sum():
print 'Oops'
exit()
# Write out as an ascii table
output=open(JLA.get_full_path(params['classification']),'w')
output.write('# DES SN classification\n')
output.write('# Written on %s\n' % (JLA.get_date()))
output.write('# redshift\tRaw_bias\tfraction\n')
output.write('%4.2f\t%4.3f\t%4.3f\n' % (0.0,0.0,0.0))
for i in range(len(bins)-1):
if SNeIa_total[0][i] > 0:
output.write('%4.2f\t%4.3f\t%4.3f\n' % (bins[i+1],bias[i+1],1.0-1.0*SNeIa[0][i]/SNeIa_total[0][i]))
output.close()
return