當前位置: 首頁>>代碼示例>>Python>>正文


Python JLA_library.get_date方法代碼示例

本文整理匯總了Python中JLA_library.get_date方法的典型用法代碼示例。如果您正苦於以下問題:Python JLA_library.get_date方法的具體用法?Python JLA_library.get_date怎麽用?Python JLA_library.get_date使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在JLA_library的用法示例。


在下文中一共展示了JLA_library.get_date方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_model

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_model(options):

    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA
    from astropy.table import Table
    from astropy.cosmology import FlatwCDM
    from scipy.interpolate import interp1d


    # -----------  Read in the configuration file ------------
    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    print 'There are %d SNe' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    redshift = SNe['zcmb']
    replace=(redshift < 0)

    # For SNe that do not have the CMB redshift
    redshift[replace]=SNe[replace]['zhel']
    print len(redshift)

    if options.raw:
        # Data from the bottom left hand figure of Mosher et al. 2014.
        # This is option ii) that is descibed above
        offsets=Table.read(JLA.get_full_path(params['modelOffset']),format='ascii.csv')
        Delta_M=interp1d(offsets['z'], offsets['offset'], kind='linear',bounds_error=False,fill_value='extrapolate')(redshift)
    else:
        Om_0=0.303 # JLA value in the wCDM model
        cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
        cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
        Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))
    
    # Build the covariance matrix. Note that only magnitudes are affected
    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
    C_model=numpy.matrix(H).T * numpy.matrix(H)

    date = JLA.get_date()
    fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True) 

    return None
開發者ID:dessn,項目名稱:Covariance,代碼行數:60,代碼來源:jla_compute_Cmodel.py

示例2: compute_Cstat

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_Cstat(options):
    """Python program to compute C_stat
    """

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import JLA_library as JLA

    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')


    # -----------  Read in the data --------------------------

    print 'There are %d SNe in the sample' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe=SNe[indices]

    C_stat=numpy.zeros(9*nSNe*nSNe).reshape(3*nSNe,3*nSNe)

    for i,SN in enumerate(SNe):
        cov=numpy.zeros(9).reshape(3,3)
        cov[0,0]=SN['dmb']**2.
        cov[1,1]=SN['dx1']**2.
        cov[2,2]=SN['dcolor']**2.
        cov[0,1]=SN['cov_m_s']
        cov[0,2]=SN['cov_m_c']
        cov[1,2]=SN['cov_s_c']
        # symmetrise
        cov=cov+cov.T-numpy.diag(cov.diagonal())
        C_stat[i*3:i*3+3,i*3:i*3+3]=cov

    # -----------  Read in the base matrix computed using salt2_stat.cc ------------

    if options.base!=None:
        C_stat+=fits.getdata(options.base)

    date = JLA.get_date()
    fits.writeto('C_stat_%s.fits' % date,C_stat,clobber=True) 

    return
開發者ID:clidman,項目名稱:Covariance,代碼行數:59,代碼來源:jla_compute_Cstat.py

示例3: compute_dust

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_dust(options):
    """Python program to compute C_dust
    """

    import numpy
    import astropy.io.fits as fits
    import os
    import JLA_library as JLA

    # ---------- Read in the SNe list -------------------------

    SNelist = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S110',
                               names=['id', 'lc'])

    for i, SN in enumerate(SNelist):
        SNelist['id'][i] = SNelist['id'][i].replace('lc-','').replace('.list','')

    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)
    try:
        salt_path = JLA.get_full_path(params['defsaltModel'])
    except KeyError:
        salt_path = ''
        
    # -----------   The lightcurve fitting -------------------

    # Compute the offset between the nominal value of the extinciton 
    # and the adjusted value
    # We first compute the difference in light curve fit parameters for E(B-V) * (1+offset)
    offset = 0.1

    j = []

    for SN in SNelist:
        inputFile = SN['lc']
        print 'Fitting %s ' % (SN['lc'])
        workArea = JLA.get_full_path(options.workArea)
        dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset, workArea, salt_path)
        j.extend([dm, dx1, dc])
    
    # But we want to compute the impact of an offset that is twice as large, hence the factor of 4 in the expression
    # 2017/10/13
    # But we want to compute the impact of an offset that is half as large, hence the factor of 4 in the denominator
    # cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0
    cdust = numpy.matrix(j).T * numpy.matrix(j) / 4.0

    date = JLA.get_date()

    fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True) 

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:56,代碼來源:jla_compute_Cdust.py

示例4: compute_model

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_model(options):

    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA
    from astropy.table import Table
    from astropy.cosmology import FlatwCDM



    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    print 'There are %d SNe' % (nSNe)

    #z=numpy.array([])
    #offset=numpy.array([])
    Om_0=0.303 # JLA value in the wCDM model

    cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
    cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
    
    # For the JLA SNe
    redshift = SNe['zcmb']
    replace=(redshift < 0)
    # For the non JLA SNe
    redshift[replace]=SNe[replace]['zhel']

    Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))

    # Build the covariance matrix. Note that only magnitudes are affected
    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
    C_model=numpy.matrix(H).T * numpy.matrix(H)

    date = JLA.get_date()
    fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True) 

    return None
開發者ID:clidman,項目名稱:Covariance,代碼行數:55,代碼來源:jla_compute_Cmodel.py

示例5: make_FilterCurves

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def make_FilterCurves(options):

    filterCurve=Table.read(options.input,format='fits')

    f=open("des_y3a1_std_%s.dat" % (options.filterName),'w')
    f.write("# Written on %s\n" % (JLA.get_date()))
    f.write("# Derived from %s\n" % (options.input))
    f.write("# Wavelength (Angstroms) Transmission\n")
    selection=(filterCurve["lambda"] >  bounds[options.filterName]["lower"]) & (filterCurve["lambda"] <  bounds[options.filterName]["upper"])
    for line in filterCurve[selection]:
        f.write("%5.1f %7.5f\n" % (line["lambda"],line[options.filterName]))

    f.close

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:17,代碼來源:jla_filerCurves.py

示例6: compute_dust

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_dust(options):
    """Python program to compute C_dust
    """

    import numpy
    import astropy.io.fits as fits
    import os
    import JLA_library as JLA

    # ---------- Read in the SNe list -------------------------

    SNelist = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S100',
                               names=['id', 'lc'])

    for i, SN in enumerate(SNelist):
        SNelist['id'][i] = SNelist['id'][i].replace('lc-','').replace('.list','')

    # -----------   The lightcurve fitting -------------------

    # Compute the offset between the nominal value of the extinciton 
    # and the adjusted value
    offset = 0.1

    j = []

    for SN in SNelist:
        inputFile = SN['lc']
        print 'Fitting %s' % (SN['id'])
        dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset)
        j.extend([dm, dx1, dc])
    
    cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0

    date = JLA.get_date()

    fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True) 

    return
開發者ID:clidman,項目名稱:Covariance,代碼行數:42,代碼來源:jla_compute_Cdust.py

示例7: compute_rel_size

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_rel_size(options):
    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import JLA_library as JLA
    from astropy.cosmology import FlatwCDM
    import os
    
    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # ---------- Read in the SNe list -------------------------

    SNeList=numpy.genfromtxt(options.SNlist,usecols=(0,2),dtype='S30,S200',names=['id','lc'])

    for i,SN in enumerate(SNeList):
        SNeList['id'][i]=SNeList['id'][i].replace('lc-','').replace('.list','')

    # -----------  Read in the data JLA --------------------------

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    nSNe=len(SNe)
    print 'There are %d SNe in this sample' % (nSNe)

    # sort it to match the listing in options.SNlist
    indices = JLA.reindex_SNe(SNeList['id'], SNe)        
    SNe=SNe[indices]

    # ---------- Compute the Jacobian ----------------------
    # The Jacobian is an m by 4 matrix, where m is the number of SNe
    # The columns are ordered in terms of Om, w, alpha and beta

    J=[]
    JLA_result={'Om':0.303,'w':-1.00,'alpha':0.141,'beta':3.102,'M_B':-19.05}
    offset={'Om':0.01,'w':0.01,'alpha':0.01,'beta':0.01,'M_B':0.01}
    nFit=4

    cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'], w0=JLA_result['w'])

    # Varying Om
    cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om']+offset['Om'], w0=JLA_result['w'])
    J.append(5*numpy.log10((cosmo1.luminosity_distance(SNe['zcmb'])/cosmo2.luminosity_distance(SNe['zcmb']))[:,0]))

    # varying alpha
    J.append(1.0*offset['alpha']*SNe['x1'][:,0])

    # varying beta
    J.append(-1.0*offset['beta']*SNe['color'][:,0])

    # varying M_B

    J.append(offset['M_B']*numpy.ones(nSNe))
    
    J = numpy.matrix(numpy.concatenate((J)).reshape(nSNe,nFit,order='F') * 100.)

    # Set up the covariance matrices

    systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat']

    covmatrices = {'bias':params['bias'],
                   'cal':params['cal'],
                   'host':params['host'],
                   'dust':params['dust'],
                   'model':params['model'],
                   'nonia':params['nonia'],
                   'pecvel':params['pecvel'],
                   'stat':params['stat']}


    if options.type in systematic_terms:
        print "Using %s for the %s term" % (options.name,options.type) 
        covmatrices[options.type]=options.name

    # Combine the matrices to compute the full covariance matrix, and compute its inverse
    if options.all:
        #read in the user provided matrix, otherwise compute it, and write it out
        C=fits.getdata(JLA.get_full_path(params['all']))
    else:
        C=add_covar_matrices(covmatrices,params['diag'])
        date=JLA.get_date()
        fits.writeto('C_total_%s.fits' % (date), C, clobber=True)

    Cinv=numpy.matrix(C).I


    # Construct eta, a 3n vector

    eta=numpy.zeros(3*nSNe)
    for i,SN in enumerate(SNe):
        eta[3*i]=SN['mb']
        eta[3*i+1]=SN['x1']
        eta[3*i+2]=SN['color']

    # Construct A, a n x 3n matrix
    A=numpy.zeros(nSNe*3*nSNe).reshape(nSNe,3*nSNe)

    for i in range(nSNe):
#.........這裏部分代碼省略.........
開發者ID:clidman,項目名稱:Covariance,代碼行數:103,代碼來源:jla_compute_rel_size.py

示例8: train_SALT2

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def train_SALT2(options):
    # Read in the configuration file
    params=JLA.build_dictionary(options.config)
    
    # Make the initialisation and training directories
    mkdir(params['trainingDir'])

    # Copy accross files from the initDir to the trainingDir
    for file in os.listdir(params['initDir']):
        sh.copy(params['initDir']+'/'+file,params['trainingDir'])

    # Make the output directory
    date=date=JLA.get_date()
    outputDir="/%s/data_%s_%s_%s/" % (params['outputDir'],date,params['trainingSample'],params['snpcaVersion'])
    mkdir(outputDir)
    
    os.chdir(params['trainingDir'])
    
    # Part a) First training, withiout error snake

    # Step 1 - Train without the error snake
    cmd=['pcafit',
         '-l','trainingsample_snls_sdss_v5.list',
         '-c','training_without_error_snake.conf',
         '-p','pca_1_opt1_final.list',
         '-d']

    sp.call(' '.join(cmd),shell=True)

    # Step 2 - Compute uncertainties
    cmd=['write_pca_uncertainties', 
         'pca_1_opt1_final.list',
         'full_weight_1.fits', 
         '2', 
         '1.0',
         '1.0']

    sp.call(' '.join(cmd),shell=True)

    # Step 3 - Compute error snake
    cmd=['Compute_error_snake',
         'trainingsample_snls_sdss_v5.list', 
         'training_without_error_snake.conf', 
         'pca_1_opt1_final.list',
         'full_weight_1.fits',
         'covmat_1_with_constraints.fits']
    sp.call(' '.join(cmd),shell=True)

    sh.copy('pca_1_opt1_final.list', 'pca_1_opt1_final_first.list')
    sh.copy('model_covmat_for_error_snake.fits','model_covmat_for_error_snake_first.fits')
    sh.copy('salt2_lc_dispersion_scaling.dat', 'salt2_lc_dispersion_scaling_first.dat')

    
    # Part b Second training, with the error snake

    # Step 4 - Second training using the output from the first three steps
    cmd=['pcafit',
         '-l','trainingsample_snls_sdss_v5.list',
         '-c','training_with_error_snake.conf',
         '-p','pca_1_opt1_final_first.list',
         '-d']
         
    sp.call(' '.join(cmd),shell=True)

    # Step 5 - Recompute uncertainties
    cmd=['write_pca_uncertainties', 
         'pca_1_opt1_final.list',
         'full_weight_1.fits', 
         '2', 
         '1.0',
         '1.0']
開發者ID:dessn,項目名稱:Covariance,代碼行數:73,代碼來源:jla_train_SALT2.py

示例9: compute_C_K

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def compute_C_K(options):
    import JLA_library as JLA
    import numpy
    import astropy.io.fits as fits

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    # -----------  We read in the JLA version of C_Kappa ------------

    if options.base:
        # CfA1 and CfA2 not treated separately and we use the JLA uncertainties
        nDim = 42
    else:
        # CfA1 and CfA2 treated separately, and we use the Pantheon uncertainties
        nDim = 58
        
    C_K_H0 = numpy.zeros(nDim * nDim).reshape(nDim, nDim)

    if options.base:
        # Read in the JLA matrix and extract the appropriate rows and columns
        # The matrix is structured in blocks with ZPs first,
        # and uncertainties in the filter curves second
        # The order is specified in salt2_calib_variations_all/saltModels.list
        # Standard, Landolt photometry is in rows 5 to 9 and rows 42 to 46
        # Keplercam is in rows 10 to 14 and 47 to 51
        # 4 Shooter is in rows 15 to 19 and 52 5o 56
        # CSP is in rows 20 to 25 and 56 to 62
        
        C_K_JLA = fits.getdata(JLA.get_full_path(params['C_kappa_JLA']))

        # Extract the relevant columns and rows
        # ZPs first
        # Since the indices are consecutive, we do this all at once
        size = C_K_JLA.shape[0]
        C_K_H0[0:21, 0:21] = C_K_JLA[4:25,4:25]

        # Filter curves second
        C_K_H0[21:42, 21:42] = C_K_JLA[4+size/2:25+size/2,4+size/2:25+size/2]
    else:
        filterUncertainties = numpy.genfromtxt(JLA.get_full_path(params['filterUncertainties']),
                comments='#',usecols=(0,1,2,3,4), dtype='S30,f8,f8,f8,f8',
                names=['filter', 'zp', 'zp_off', 'wavelength', 'central'])

        # 1) ZP and filter uncertainty
        # We add a third of the offset found in Scolnic et al.
        for i, filt in enumerate(filterUncertainties):
            C_K_H0[i, i] = (filt['zp'] / 1000.)**2. + (filt['zp_off'] / 3. / 1000.)**2.
            C_K_H0[i+29, i+29] = (filt['wavelength'])**2.


        # 2a) B14 3.4.1 The uncertainty associated to the measurement of
        # the Secondary CALSPEC standards
        # The uncerteinty is assumed to be uncorrelated between filters
        # It only affects the diagonal terms of the ZPs
        # It is estmated from repeat STIS measurements of the standard
        # AGK+81D266  Bohlin et al. 2000 AJ 120, 437 and Bohlin 1999 ISR 99-07

        # This is the most pessimistic option. We assume that only one standard was observed
        nObs = 1                 # It's been observed once
        unc_transfer = 0.003     # 0.3% uncertainty

        for i, filt1 in enumerate(filterUncertainties):
            C_K_H0[i, i] += unc_transfer**2. / nObs


        # 2b) B14 3.4.1 The uncertainty in the colour of the WD system 0.5%
        # from 3,000-10,000
        # The uncertainty is computed with respect to the Bessell B filter.
        # The Bessell B filter is the filter we use in computing the dist. modulus
        # The absolute uncertainty at the rest frame wavelengt of the B band
        # is not important here, as this is absorbed into the
        # combination of the absolute B band magnitude of SNe Ia and
        # the Hubble constant.

        slope = 0.005
        waveStart = 300
        waveEnd = 1000.
        # central = 436.0 # Corresponds to B filter
        central = 555.6   # Used in the Pantheon sample

        # Note that 2.5 * log_10 (1+x) ~ x for |x| << 1
        for i, filt1 in enumerate(filterUncertainties):
            for j, filt2 in enumerate(filterUncertainties):
                if i >= j:
                    C_K_H0[i, j] += (slope / (waveEnd - waveStart) * (filt1['central']-central)) * \
                        (slope / (waveEnd - waveStart) * (filt2['central']-central))
                

        C_K_H0 = C_K_H0+C_K_H0.T-numpy.diag(C_K_H0.diagonal())


    # Write out the results
    date = JLA.get_date()
    hdu = fits.PrimaryHDU(C_K_H0)
    hdu.writeto("%s_%s.fits" % (options.output, date), clobber=True)

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:101,代碼來源:jla_compute_C_K_H0.py

示例10: compute_bias

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]

#.........這裏部分代碼省略.........
                                  dtype='S10,f8,f8,f8',
                                  names=['sample', 'redshift', 'bias', 'e_bias'])

    if options.plot:
        fig=plt.figure()
        ax=fig.add_subplot(111)
        colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'}

    for sample in numpy.unique(bias['sample']):
        selection=(bias['sample']==sample)
        guess=[0,0,0]

        print bias[selection]
        plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
                                             bias[selection]['redshift'],
                                             bias[selection]['e_bias'],
                                             'poly'), full_output=1)

        if plsq[4] in [1,2,3,4]:
            print 'Solution for %s found' % (sample)

        if options.plot:
            ax.errorbar(bias[selection]['redshift'],
                    bias[selection]['bias'],
                    yerr=bias[selection]['e_bias'],
                    ecolor='k',
                    color=colour[sample],
                    fmt='o',
                    label=sample)
            z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
            ax.plot(z,poly(z,plsq[0]),color=colour[sample])

        # For each SNe, determine the uncerainty in the correction. We use the approach descibed in
        # https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
        
        # Compute the chi-sq.
        chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
        dof=selection.sum()-len(guess)
        print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)

        alpha=0.315 # Confidence interval is 100 * (1-alpha)
        # Compute the upper alpha/2 value for the student t distribution with dof
        thresh=t.ppf((1-alpha/2.0), dof)
        
        if options.plot and sample!='nearby':
            # The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample
            upper_curve=[]
            lower_curve=[]
            for x in z:
                vect=numpy.matrix([1,x,x**2.])
                offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
                upper_curve.append(poly(x,plsq[0])+offset)
                lower_curve.append(poly(x,plsq[0])-offset)

            ax.plot(z,lower_curve,'--',color=colour[sample])
            ax.plot(z,upper_curve,'--',color=colour[sample])

        # Compute the error in the bias
        # We increase the absolute value
        # In other words, if the bias is negative, we subtract the error to make it even more negative
        # This is to get the correct sign in the off diagonal elements
        # We assume 100% correlation between SNe
        for i,SN in enumerate(SNe):
            if SN['zcmb'] > 0:
                redshift = SN['zcmb']
            else:
                redshift = SN['zhel']
            if JLA.survey(SN) == sample:
                # For the nearby SNe, the uncertainty in the bias correction is the bias correction itself
                if sample=='nearby':
                    SNe['e_bias'][i]=poly(redshift,plsq[0])
                    #print SN['name'],redshift, SNe['e_bias'][i]
                else:
                    vect = numpy.matrix([1,redshift,redshift**2.])
                    if poly(redshift,plsq[0]) > 0:
                        sign = 1
                    else:
                        sign = -1

                    SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])

                # We are getting some unrealistcally large values

    date = JLA.get_date()

    if options.plot:
        ax.legend()
        plt.savefig('C_bias_%s.png' % (date))
        plt.close()

    # Compute the bias matrix
    # 

    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F')
    C_bias = numpy.matrix(H).T * numpy.matrix(H)

    fits.writeto('C_bias_%s.fits' % (date),C_bias,clobber=True) 

    return None
開發者ID:dessn,項目名稱:Covariance,代碼行數:104,代碼來源:jla_compute_Cbias.py

示例11: compute_Ccal

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]

#.........這裏部分代碼省略.........
            dM,dX,dC=JLA.computeOffsets(results[0],result)
            J.extend([dM,dX,dC])
        pool.close() # This prevents to many open files

        if firstSN:
            J_new=numpy.array(J).reshape(nSALTmodels,3).T
            firstSN=False
        else:
            J_new=numpy.concatenate((J_new,numpy.array(J).reshape(nSALTmodels,3).T),axis=0)

        log.write('%d rows %d columns\n' % (J_new.shape[0],J_new.shape[1]))

    log.close()

    # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix
    # J=jacobian

    J_smoothed=numpy.array(J_new)*0.0
    J=J_new

    # We need to concatenate the different samples ...
    
    if options.Plot:
        try:
            os.mkdir('figures')
        except:
            pass               

    nPoints={'SNLS':11,'SDSS':11,'nearby':11,'high-z':11,'DES':11} 
    #sampleList=['nearby','DES']
    sampleList=params['smoothList'].split(',')
    if options.smoothed:
        # We smooth the Jacobian 
        # We roughly follow the method descibed in the footnote of p13 of B14
        for sample in sampleList:
            selection=(SNeList['survey']==sample)
            J_sample=J[numpy.repeat(selection,3)]

            for sys in range(nSALTmodels):
                # We need to convert to a numpy array
                # There is probably a better way
                redshifts=numpy.array([z for z in SNeList[selection]['z']])
                derivatives_mag=J_sample[0::3][:,sys]  # [0::3] = [0,3,6 ...] Every 3rd one
                #print redshifts.shape, derivatives_mag.shape, nPoints[sample]
                forPlotting_mag,res_mag=JLA.smooth(redshifts,derivatives_mag,nPoints[sample])
                derivatives_x1=J_sample[1::3][:,sys]
                forPlotting_x1,res_x1=JLA.smooth(redshifts,derivatives_x1,nPoints[sample])
                derivatives_c=J_sample[2::3][:,sys]
                forPlotting_c,res_c=JLA.smooth(redshifts,derivatives_c,nPoints[sample])

                # We need to insert the new results into the smoothed Jacobian matrix in the correct place
                # The Jacobian ia a 3 * n_SN by nSATLModels matrix
                # The rows are ordered by the mag, stretch and colour of each SNe.
                J_smoothed[numpy.repeat(selection,3),sys]=numpy.concatenate([res_mag,res_x1,res_c]).reshape(3,selection.sum()).ravel('F')

                # If required, make some plots as a way of checking 

                if options.Plot:
                    print 'Creating plot for systematic %d and sample %s' % (sys, sample) 
                    fig=plt.figure()
                    ax1=fig.add_subplot(311)
                    ax2=fig.add_subplot(312)
                    ax3=fig.add_subplot(313)
                    ax1.plot(redshifts,derivatives_mag,'bo')
                    ax1.plot(forPlotting_mag[0],forPlotting_mag[1],'r-')
                    ax1.set_ylabel('mag')
                    ax2.plot(redshifts,derivatives_x1,'bo')
                    ax2.plot(forPlotting_x1[0],forPlotting_x1[1],'r-')
                    ax2.set_ylabel('x1')
                    ax3.plot(redshifts,derivatives_c,'bo')
                    ax3.plot(forPlotting_c[0],forPlotting_c[1],'r-')
                    ax3.set_ylabel('c')
                    ax3.set_xlabel('z')
        
                    plt.savefig('figures/%s_sys_%d.png' % (sample,sys))
                    plt.close()

    date=JLA.get_date()


    fits.writeto('J_%s.fits' % (date) ,J,clobber=True) 
    fits.writeto('J_smoothed_%s.fits' % (date), J_smoothed,clobber=True) 

    # Some matrix arithmatic
    # C_cal is a nSALTmodels by nSALTmodels matrix

    # Read in a smoothed Jacobian specified in the options
    if options.jacobian != None:
        J_smoothed=fits.getdata(options.jacobian)
#    else:
#        # Replace the NaNs in your smoothed Jacobian with zero
#        J_smoothed[numpy.isnan(J_smoothed)]=0

    C=numpy.matrix(J_smoothed)*numpy.matrix(Cal)*numpy.matrix(J_smoothed).T
    if options.output==None:
        fits.writeto('C_cal_%s.fits' % (date), numpy.array(C), clobber=True) 
    else:
        fits.writeto('%s.fits' % (options.output),numpy.array(C),clobber=True)

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:104,代碼來源:jla_compute_Ccal.py

示例12: compute_C_K

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]

#.........這裏部分代碼省略.........

        # Cross terms. Not needed, as they are zero
        # C_K_DES[0:16, 23:39] = C_K_JLA[9:25,9+size/2:25+size/2]
        # C_K_DES[23:39, 0:16] = C_K_JLA[9+size/2:25+size/2,9:25]

    # Read in the table listing the uncertainties in the ZPs and
    # effective wavelengths

    filterUncertainties = numpy.genfromtxt(JLA.get_full_path(params['filterUncertainties']),
                comments='#',usecols=(0,1,2,3,4), dtype='S30,f8,f8,f8,f8',
                names=['filter', 'zp', 'zp_off', 'wavelength', 'central'])

    # For the Bc filter of CfA, and the V1 and V2 filters of CSP,
    # we asumme that they have the same sized systematic uncertainteies as
    # B filter of CfA and V1 and V2 filters of CSP
    # We could either copy these terms across or recompute them.
    # We choose to recompute them 


    # Compute the terms in DES, this includes the cross terms
    # We first compute them separately, then add them to the matrix

    nFilters = len(filterUncertainties)
    C_K_new = numpy.zeros(nFilters*nFilters*4).reshape(nFilters*2, nFilters*2)

    # 1) DES controlled uncertainties  
    #   This uncertainty in the ZP has seeral components
    #   a) The uncertainty in the differential chromatic correction (set to zero for now)
    #   Note that this error is 100% correlated to the component of b) that comes from the filter curve
    #   b) The uncertainty in the measurement of the transfer to the AB system
    #      using the observations of C26202
    #   c) The SN field-to-field variation between DES and GAIA

    for i, filt in enumerate(filterUncertainties):
        if 'DES' in filt['filter']:
            error_I0,error_chromatic,error_AB=FGCM.prop_unc(params,filt)
            #print numpy.sqrt((error_AB)**2. + (FGCM_unc)**2. / nC26202_Observations[filt['filter']])
            C_K_new[i, i] = uniformity**2. + (error_AB)**2.+(FGCM_unc)**2. / nC26202_Observations[filt['filter']] + SMP_ZP**2.
            print '%s %5.4f' % (filt['filter'],numpy.sqrt(C_K_new[i, i]))
            C_K_new[i, i+nFilters] = (error_AB) * filt['wavelength']
            C_K_new[i+nFilters, i] = (error_AB) * filt['wavelength']
            C_K_new[i+nFilters, i+nFilters] = (filt['wavelength'])**2.
        else:
            C_K_new[i, i] = (filt['zp'] / 1000.)**2. + (filt['zp_off'] / 3. / 1000.)**2.


    # 2a) B14 3.4.1 The uncertainty associated to the measurement of
    # the Secondary CALSPEC standards
    # The uncerteinty is assumed to be uncorrelated between filters
    # It only affects the diagonal terms of the ZPs
    # It is estmated from repeat STIS measurements of the standard
    # AGK+81D266  Bohlin et al. 2000 AJ 120, 437 and Bohlin 1999 ISR 99-07

    nObs_C26202 = 1          # It's been observed once
    unc_transfer = 0.003     # 0.3% uncertainty

    for i, filt1 in enumerate(filterUncertainties):
        C_K_new[i, i] += unc_transfer**2. / nObs_C26202


    # 2b) B14 3.4.1 The uncertainty in the colour of the WD system 0.5%
    # from 3,000-10,000
    # The uncertainty is computed with respect to the Bessell B filter.
    # The Bessell B filter is the filter we use in computing the dist. modulus
    # The absolute uncertainty at the rest frame wavelengt of the B band
    # is not important here, as this is absorbed into the
    # combination of the absolute B band magnitude of SNe Ia and
    # the Hubble constant.

    slope = 0.005
    waveStart = 300
    waveEnd = 1000.
    # central = 436.0 # Corresponds to B filter
    central = 555.6   # Used in the Pantheon sample

    # Note that 2.5 * log_10 (1+x) ~ x for |x| << 1
    for i, filt1 in enumerate(filterUncertainties):
        for j, filt2 in enumerate(filterUncertainties):
            if i >= j:
                C_K_new[i, j] += (slope / (waveEnd - waveStart) * (filt1['central']-central)) * \
                                 (slope / (waveEnd - waveStart) * (filt2['central']-central))
                
    C_K_new = C_K_new+C_K_new.T-numpy.diag(C_K_new.diagonal())

    if options.base:
        # We do not update 
        sel = numpy.zeros(nDim, bool)
        sel[0:16] = True
        sel[23:39] = True
        sel2d = numpy.matrix(sel).T * numpy.matrix(sel)
        C_K_new[sel2d] = 0.0

    C_K_DES += C_K_new

    # Write out the results
    date = JLA.get_date()
    hdu = fits.PrimaryHDU(C_K_DES)
    hdu.writeto("%s_%s.fits" % (options.output, date), clobber=True)

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:104,代碼來源:jla_compute_C_K.py

示例13: add_covar_matrices

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]
def add_covar_matrices(options):
    """
    Python program that adds the individual covariance matrices into a single matrix
    """

    import time
    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA

    params = JLA.build_dictionary(options.config)

    # Read in the terms that account for uncertainties in perculiar velocities, 
    # instrinsic dispersion and, lensing

    # Read in the covariance matrices
    matrices = []

    systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat']

    covmatrices = {'bias':params['bias'],
                   'cal':params['cal'],
                   'host':params['host'],
                   'dust':params['dust'],
                   'model':params['model'],
                   'nonia':params['nonia'],
                   'pecvel':params['pecvel'],
                   'stat':params['stat']}

    for term in systematic_terms:
        matrices.append(fits.getdata(JLA.get_full_path(covmatrices[term]), 0))

    # Add the matrices
    size = matrices[0].shape
    add = numpy.zeros(size[0]**2.).reshape(size[0], size[0])
    for matrix in matrices:
        add += matrix

    # Write out this matrix. This is C_eta in qe. 13 of B14

    date=JLA.get_date()

    fits.writeto('C_eta_%s.fits' % (date), add, clobber=True)

    # Compute A

    nSNe = size[0]/3

    jla_results = {'Om':0.303, 'w':-1.027, 'alpha':0.141, 'beta':3.102}

    arr = numpy.zeros(nSNe*3*nSNe).reshape(nSNe, 3*nSNe)

    for i in range(nSNe):
        arr[i, 3*i] = 1.0
        arr[i, 3*i+1] = jla_results['alpha']
        arr[i, 3*i+2] = -jla_results['beta']

    cov = numpy.matrix(arr) * numpy.matrix(add) * numpy.matrix(arr).T

    # Add the diagonal terms

    sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']),
                             comments='#',
                             usecols=(0, 1, 2),
                             dtype='f8,f8,f8',
                             names=['sigma_coh', 'sigma_lens', 'sigma_pecvel'])

    for i in range(nSNe):
        cov[i, i] += sigma['sigma_coh'][i]**2 + \
        sigma['sigma_lens'][i]**2 + \
        sigma['sigma_pecvel'][i]**2

    fits.writeto('C_total_%s.fits' % (date), cov, clobber=True)

    return
開發者ID:clidman,項目名稱:Covariance,代碼行數:77,代碼來源:jla_add_covar_matrices.py

示例14: compute_nonIa

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]

#.........這裏部分代碼省略.........
    # f_bright = 0.25 # The fraction of Ibc SN that are bright

    # Simulate the characteristics of the SNLS survey
    # Apply outlier rejection
    # All SNe that pass the cuts are included in the sample

    # One then has a mixture of SNe Ia and SNe Ibc
    # and the average magnitude at each redshift is biased. This
    # is called the raw bias. One multiplies the raw bias by the fraction of
    # objects classified as SNe Ia*

    # The results are presented in 7 redshift bins defined in table 14 of C11
    # We use these results to generate the matrix.
    # Only the SNLS SNe in the JLA sample are considered.
    # For the photometrically selected sample and other surveys, this will probably be different
    # JLA compute this for the SNLS sample only

    # We assume that the redshift in this table refers to the left hand edge of each bin

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)
    

    data=numpy.genfromtxt(JLA.get_full_path(params['classification']),comments="#",usecols=(0,1,2),dtype=['float','float','float'],names=['redshift','raw_bias','fraction'])
    z_bin=data['redshift']
    raw_bias=data['raw_bias']
    f_star=data['fraction']
    
    # The covaraiance between SNe Ia in the same redshift bin is fully correlated
    # Otherwise, it is uncorrelated

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Add a bin column and a column that specifies if the covariance needs to be computed
    SNe['bin'] = 0
    SNe['eval'] = False

    # make the order of data (in SNe) match SNeList
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    nSNe = len(SNe)
    # Identify the SNLS SNe in the JLA sample
    # We use the source and the name to decide if we want to add corrections for non-Ia contamination
    # Identify the DESS SNe in the DES sample.
    for i, SN in enumerate(SNe):
        try:
            # If the source keyword exists
            if (SN['source'] == 'JLA' or SN['source'] == 'SNLS_spec') and SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4']:
                SNe['eval'][i] = True
            elif (SN['source']== 'SNLS_photo') and (SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4'] or (SN['name'][0:2] in ['D1', 'D2', 'D3', 'D4'])):
                SNe['eval'][i] = True
        except:
            # If the source keyword does not exist
            if SN['name'][0:3]=="DES":
                SNe['eval'][i] = True

    print list(SNe['eval']).count(True)
    # Work out which redshift bin each SNe belongs to
    # In numpy.digitize, the bin number starts at 1, so we subtract 1 -- need to check...
    SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1 

    # Build the covariance matrix
    C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)

    # It only computes the covariance for the spectroscopically confirmed SNLS SNe
    # We assume that covariance between redshift bins is uncorrelated
    # Within a redshift bin, we assume 100% covariance between SNe in that bin

    for i in range(nSNe):
        bin1 = SNe['bin'][i]
        if SNe['eval'][i]:
            print SNe['zhel'][i], bin1, raw_bias[bin1], f_star[bin1], i
        for j in range(nSNe):
            bin2 = SNe['bin'][j]
            if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2:
                C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])**2

    # print SNe['bin'][:239]
    # I am unable to reproduce this JLA covariance matrix

    date = JLA.get_date()

    fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True)

    return
開發者ID:dessn,項目名稱:Covariance,代碼行數:104,代碼來源:jla_compute_CnonIa.py

示例15: merge_lightcurve_fits

# 需要導入模塊: import JLA_library [as 別名]
# 或者: from JLA_library import get_date [as 別名]

#.........這裏部分代碼省略.........

    # I imagine that the tables package in astropy could also be used to read the ascii input file
    SNeSpec = Table(numpy.genfromtxt(lightCurveFits,
                               skip_header=1,
                               dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                               names=names))

    nSNeSpec=len(SNeSpec)
    print 'There are %d SNe from the spectrscopically confirmed sample' % (nSNeSpec)

    # Add an extra column to the table
    SNeSpec['source']=['JLA']*nSNeSpec

    # ---------------- Shuvo's sample ------------------------
    # Photometrically identified SNe in Shuvo's sample, if the parameter exists
    if params['photLightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['photLightCurveFits'])
        SNePhot=Table.read(lightCurveFits, format='fits')
        nSNePhot=len(SNePhot)

        print 'There are %d SNe from the photometric sample' % (nSNePhot)

        # Converting from Shuvo's names to thosed used by JLA
        conversion={'name':'name_adj', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':'col27', 'd3rdvar':'d3rdvar', 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None}

        # Add the uncertainty in the mass column
        SNePhot['d3rdvar']=(SNePhot['col29']+SNePhot['col28'])/2. - SNePhot['col27']

        # Remove columns that are not listed in conversion
    
        for colname in SNePhot.colnames:
            if colname not in conversion.values():
                SNePhot.remove_column(colname)

    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNePhot.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNePhot[key]=MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot,bool))
                SNePhot[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNePhot[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNePhot['source']="Phot_Uddin"       

    # ----------------------  CfA4 ----------------------------------
    if params['CfA4LightCurveFits']!='None':
        lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits'])
        f=open(lightCurveFits)
        header=f.readlines()
        f.close()
        names=header[0].strip('#').split(',')    

        SNeCfA4=Table(numpy.genfromtxt(lightCurveFits,
                                       skip_header=1,
                                       dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8',
                                       names=names,delimiter=','))

        nSNeCfA4=len(SNeCfA4) 
    
        conversion={'name':'name', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':None, 'd3rdvar':None, 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None}

        # Remove columns that are not listed in conversion
    
        for colname in SNeCfA4.colnames:
            if colname not in conversion.values():
                SNeCfA4.remove_column(colname)
    
        for key in conversion.keys():
            # Rename the column if it does not already exist
            if conversion[key]!=None and conversion[key]!=key:
                SNeCfA4.rename_column(conversion[key], key)
            elif conversion[key]==None:
                # Create it, mask it, and fill all values
                SNeCfA4[key]=MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4,bool))
                SNeCfA4[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line
                SNeCfA4[key]=-99.9
            else:
                # Do nothing if the column already exists
                pass

        # Add the source column
        SNeCfA4['source']="CfA4"   

    try:
        SNe=vstack([SNeSpec,SNePhot,SNeCfA4])
    except:
        SNe=SNeSpec

    # Write out the result as a FITS table
    date = JLA.get_date()
    SNe.write('%s_%s.fits' % (options.output, date), format='fits')

    return
開發者ID:clidman,項目名稱:Covariance,代碼行數:104,代碼來源:jla_merge_lightcurve_fits.py


注:本文中的JLA_library.get_date方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。