本文整理匯總了Java中org.apache.hadoop.mapred.JobConf.setSpeculativeExecution方法的典型用法代碼示例。如果您正苦於以下問題:Java JobConf.setSpeculativeExecution方法的具體用法?Java JobConf.setSpeculativeExecution怎麽用?Java JobConf.setSpeculativeExecution使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapred.JobConf
的用法示例。
在下文中一共展示了JobConf.setSpeculativeExecution方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: runTests
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Run the test
*
* @throws IOException on error
*/
public static void runTests() throws IOException {
config.setLong("io.bytes.per.checksum", bytesPerChecksum);
JobConf job = new JobConf(config, NNBench.class);
job.setJobName("NNBench-" + operation);
FileInputFormat.setInputPaths(job, new Path(baseDir, CONTROL_DIR_NAME));
job.setInputFormat(SequenceFileInputFormat.class);
// Explicitly set number of max map attempts to 1.
job.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
job.setSpeculativeExecution(false);
job.setMapperClass(NNBenchMapper.class);
job.setReducerClass(NNBenchReducer.class);
FileOutputFormat.setOutputPath(job, new Path(baseDir, OUTPUT_DIR_NAME));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks((int) numberOfReduces);
JobClient.runJob(job);
}
示例2: submitAsMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Based on args we submit the LoadGenerator as MR job.
* Number of MapTasks is numMapTasks
* @return exitCode for job submission
*/
private int submitAsMapReduce() {
System.out.println("Running as a MapReduce job with " +
numMapTasks + " mapTasks; Output to file " + mrOutDir);
Configuration conf = new Configuration(getConf());
// First set all the args of LoadGenerator as Conf vars to pass to MR tasks
conf.set(LG_ROOT , root.toString());
conf.setInt(LG_MAXDELAYBETWEENOPS, maxDelayBetweenOps);
conf.setInt(LG_NUMOFTHREADS, numOfThreads);
conf.set(LG_READPR, readProbs[0]+""); //Pass Double as string
conf.set(LG_WRITEPR, writeProbs[0]+""); //Pass Double as string
conf.setLong(LG_SEED, seed); //No idea what this is
conf.setInt(LG_NUMMAPTASKS, numMapTasks);
if (scriptFile == null && durations[0] <=0) {
System.err.println("When run as a MapReduce job, elapsed Time or ScriptFile must be specified");
System.exit(-1);
}
conf.setLong(LG_ELAPSEDTIME, durations[0]);
conf.setLong(LG_STARTTIME, startTime);
if (scriptFile != null) {
conf.set(LG_SCRIPTFILE , scriptFile);
}
conf.set(LG_FLAGFILE, flagFile.toString());
// Now set the necessary conf variables that apply to run MR itself.
JobConf jobConf = new JobConf(conf, LoadGenerator.class);
jobConf.setJobName("NNLoadGeneratorViaMR");
jobConf.setNumMapTasks(numMapTasks);
jobConf.setNumReduceTasks(1); // 1 reducer to collect the results
jobConf.setOutputKeyClass(Text.class);
jobConf.setOutputValueClass(IntWritable.class);
jobConf.setMapperClass(MapperThatRunsNNLoadGenerator.class);
jobConf.setReducerClass(ReducerThatCollectsLGdata.class);
jobConf.setInputFormat(DummyInputFormat.class);
jobConf.setOutputFormat(TextOutputFormat.class);
// Explicitly set number of max map attempts to 1.
jobConf.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
jobConf.setSpeculativeExecution(false);
// This mapReduce job has no input but has output
FileOutputFormat.setOutputPath(jobConf, new Path(mrOutDir));
try {
JobClient.runJob(jobConf);
} catch (IOException e) {
System.err.println("Failed to run job: " + e.getMessage());
return -1;
}
return 0;
}