本文整理匯總了Java中org.apache.hadoop.mapred.JobConf.setJobName方法的典型用法代碼示例。如果您正苦於以下問題:Java JobConf.setJobName方法的具體用法?Java JobConf.setJobName怎麽用?Java JobConf.setJobName使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapred.JobConf
的用法示例。
在下文中一共展示了JobConf.setJobName方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: runTests
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Run the test
*
* @throws IOException on error
*/
public static void runTests() throws IOException {
config.setLong("io.bytes.per.checksum", bytesPerChecksum);
JobConf job = new JobConf(config, NNBench.class);
job.setJobName("NNBench-" + operation);
FileInputFormat.setInputPaths(job, new Path(baseDir, CONTROL_DIR_NAME));
job.setInputFormat(SequenceFileInputFormat.class);
// Explicitly set number of max map attempts to 1.
job.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
job.setSpeculativeExecution(false);
job.setMapperClass(NNBenchMapper.class);
job.setReducerClass(NNBenchReducer.class);
FileOutputFormat.setOutputPath(job, new Path(baseDir, OUTPUT_DIR_NAME));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks((int) numberOfReduces);
JobClient.runJob(job);
}
示例2: createCopyJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Creates a simple copy job.
*
* @param indirs List of input directories.
* @param outdir Output directory.
* @return JobConf initialised for a simple copy job.
* @throws Exception If an error occurs creating job configuration.
*/
static JobConf createCopyJob(List<Path> indirs, Path outdir) throws Exception {
Configuration defaults = new Configuration();
JobConf theJob = new JobConf(defaults, TestJobControl.class);
theJob.setJobName("DataMoveJob");
FileInputFormat.setInputPaths(theJob, indirs.toArray(new Path[0]));
theJob.setMapperClass(DataCopy.class);
FileOutputFormat.setOutputPath(theJob, outdir);
theJob.setOutputKeyClass(Text.class);
theJob.setOutputValueClass(Text.class);
theJob.setReducerClass(DataCopy.class);
theJob.setNumMapTasks(12);
theJob.setNumReduceTasks(4);
return theJob;
}
示例3: createJobConf
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static JobConf createJobConf(Configuration conf) {
JobConf jobconf = new JobConf(conf, DistCpV1.class);
jobconf.setJobName(conf.get("mapred.job.name", NAME));
// turn off speculative execution, because DFS doesn't handle
// multiple writers to the same file.
jobconf.setMapSpeculativeExecution(false);
jobconf.setInputFormat(CopyInputFormat.class);
jobconf.setOutputKeyClass(Text.class);
jobconf.setOutputValueClass(Text.class);
jobconf.setMapperClass(CopyFilesMapper.class);
jobconf.setNumReduceTasks(0);
return jobconf;
}
示例4: createSubmittableJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* @param args
* @return the JobConf
* @throws IOException
*/
public JobConf createSubmittableJob(String[] args) throws IOException {
JobConf c = new JobConf(getConf(), getClass());
c.setJobName(NAME);
// Columns are space delimited
StringBuilder sb = new StringBuilder();
final int columnoffset = 2;
for (int i = columnoffset; i < args.length; i++) {
if (i > columnoffset) {
sb.append(" ");
}
sb.append(args[i]);
}
// Second argument is the table name.
TableMapReduceUtil.initTableMapJob(args[1], sb.toString(),
RowCounterMapper.class, ImmutableBytesWritable.class, Result.class, c);
c.setNumReduceTasks(0);
// First arg is the output directory.
FileOutputFormat.setOutputPath(c, new Path(args[0]));
return c;
}
示例5: shoudBeValidMapReduceEvaluation
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
@SuppressWarnings("deprecation")
public void shoudBeValidMapReduceEvaluation() throws Exception {
Configuration cfg = UTIL.getConfiguration();
JobConf jobConf = new JobConf(cfg);
try {
jobConf.setJobName("process row task");
jobConf.setNumReduceTasks(1);
TableMapReduceUtil.initTableMapJob(TABLE_NAME, new String(COLUMN_FAMILY),
ClassificatorMapper.class, ImmutableBytesWritable.class, Put.class,
jobConf);
TableMapReduceUtil.initTableReduceJob(TABLE_NAME,
ClassificatorRowReduce.class, jobConf);
RunningJob job = JobClient.runJob(jobConf);
assertTrue(job.isSuccessful());
} finally {
if (jobConf != null)
FileUtil.fullyDelete(new File(jobConf.get("hadoop.tmp.dir")));
}
}
示例6: shoudBeValidMapReduceWithPartitionerEvaluation
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
@SuppressWarnings("deprecation")
public void shoudBeValidMapReduceWithPartitionerEvaluation()
throws IOException {
Configuration cfg = UTIL.getConfiguration();
JobConf jobConf = new JobConf(cfg);
try {
jobConf.setJobName("process row task");
jobConf.setNumReduceTasks(2);
TableMapReduceUtil.initTableMapJob(TABLE_NAME, new String(COLUMN_FAMILY),
ClassificatorMapper.class, ImmutableBytesWritable.class, Put.class,
jobConf);
TableMapReduceUtil.initTableReduceJob(TABLE_NAME,
ClassificatorRowReduce.class, jobConf, HRegionPartitioner.class);
RunningJob job = JobClient.runJob(jobConf);
assertTrue(job.isSuccessful());
} finally {
if (jobConf != null)
FileUtil.fullyDelete(new File(jobConf.get("hadoop.tmp.dir")));
}
}
示例7: runJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Override
protected void runJob(String jobName, Configuration c, List<Scan> scans)
throws IOException, InterruptedException, ClassNotFoundException {
JobConf job = new JobConf(TEST_UTIL.getConfiguration());
job.setJobName(jobName);
job.setMapperClass(Mapper.class);
job.setReducerClass(Reducer.class);
TableMapReduceUtil.initMultiTableSnapshotMapperJob(getSnapshotScanMapping(scans), Mapper.class,
ImmutableBytesWritable.class, ImmutableBytesWritable.class, job, true, restoreDir);
TableMapReduceUtil.addDependencyJars(job);
job.setReducerClass(Reducer.class);
job.setNumReduceTasks(1); // one to get final "first" and "last" key
FileOutputFormat.setOutputPath(job, new Path(job.getJobName()));
LOG.info("Started " + job.getJobName());
RunningJob runningJob = JobClient.runJob(job);
runningJob.waitForCompletion();
assertTrue(runningJob.isSuccessful());
LOG.info("After map/reduce completion - job " + jobName);
}
示例8: run
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public int run(String[] argv) throws IOException {
if (argv.length < 2) {
System.out.println("ExternalMapReduce <input> <output>");
return -1;
}
Path outDir = new Path(argv[1]);
Path input = new Path(argv[0]);
JobConf testConf = new JobConf(getConf(), ExternalMapReduce.class);
//try to load a class from libjar
try {
testConf.getClassByName("testjar.ClassWordCount");
} catch (ClassNotFoundException e) {
System.out.println("Could not find class from libjar");
return -1;
}
testConf.setJobName("external job");
FileInputFormat.setInputPaths(testConf, input);
FileOutputFormat.setOutputPath(testConf, outDir);
testConf.setMapperClass(MapClass.class);
testConf.setReducerClass(Reduce.class);
testConf.setNumReduceTasks(1);
JobClient.runJob(testConf);
return 0;
}
示例9: runJobFail
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void runJobFail(JobConf conf, Path inDir, Path outDir)
throws IOException, InterruptedException {
conf.setJobName("test-job-fail");
conf.setMapperClass(FailMapper.class);
conf.setJarByClass(FailMapper.class);
conf.setReducerClass(IdentityReducer.class);
conf.setMaxMapAttempts(1);
boolean success = runJob(conf, inDir, outDir, 1, 0);
Assert.assertFalse("Job expected to fail succeeded", success);
}
示例10: runJobSucceed
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void runJobSucceed(JobConf conf, Path inDir, Path outDir)
throws IOException, InterruptedException {
conf.setJobName("test-job-succeed");
conf.setMapperClass(IdentityMapper.class);
//conf.setJar(new File(MiniMRYarnCluster.APPJAR).getAbsolutePath());
conf.setReducerClass(IdentityReducer.class);
boolean success = runJob(conf, inDir, outDir, 1 , 1);
Assert.assertTrue("Job expected to succeed failed", success);
}
示例11: testCombinerShouldUpdateTheReporter
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
public void testCombinerShouldUpdateTheReporter() throws Exception {
JobConf conf = new JobConf(mrCluster.getConfig());
int numMaps = 5;
int numReds = 2;
Path in = new Path(mrCluster.getTestWorkDir().getAbsolutePath(),
"testCombinerShouldUpdateTheReporter-in");
Path out = new Path(mrCluster.getTestWorkDir().getAbsolutePath(),
"testCombinerShouldUpdateTheReporter-out");
createInputOutPutFolder(in, out, numMaps);
conf.setJobName("test-job-with-combiner");
conf.setMapperClass(IdentityMapper.class);
conf.setCombinerClass(MyCombinerToCheckReporter.class);
//conf.setJarByClass(MyCombinerToCheckReporter.class);
conf.setReducerClass(IdentityReducer.class);
DistributedCache.addFileToClassPath(TestMRJobs.APP_JAR, conf);
conf.setOutputCommitter(CustomOutputCommitter.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(conf, in);
FileOutputFormat.setOutputPath(conf, out);
conf.setNumMapTasks(numMaps);
conf.setNumReduceTasks(numReds);
runJob(conf);
}
示例12: createJobConf
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static JobConf createJobConf(Configuration conf) {
JobConf jobconf = new JobConf(conf, DistCh.class);
jobconf.setJobName(NAME);
jobconf.setMapSpeculativeExecution(false);
jobconf.setInputFormat(ChangeInputFormat.class);
jobconf.setOutputKeyClass(Text.class);
jobconf.setOutputValueClass(Text.class);
jobconf.setMapperClass(ChangeFilesMapper.class);
jobconf.setNumReduceTasks(0);
return jobconf;
}
示例13: submitAsMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Based on args we submit the LoadGenerator as MR job.
* Number of MapTasks is numMapTasks
* @return exitCode for job submission
*/
private int submitAsMapReduce() {
System.out.println("Running as a MapReduce job with " +
numMapTasks + " mapTasks; Output to file " + mrOutDir);
Configuration conf = new Configuration(getConf());
// First set all the args of LoadGenerator as Conf vars to pass to MR tasks
conf.set(LG_ROOT , root.toString());
conf.setInt(LG_MAXDELAYBETWEENOPS, maxDelayBetweenOps);
conf.setInt(LG_NUMOFTHREADS, numOfThreads);
conf.set(LG_READPR, readProbs[0]+""); //Pass Double as string
conf.set(LG_WRITEPR, writeProbs[0]+""); //Pass Double as string
conf.setLong(LG_SEED, seed); //No idea what this is
conf.setInt(LG_NUMMAPTASKS, numMapTasks);
if (scriptFile == null && durations[0] <=0) {
System.err.println("When run as a MapReduce job, elapsed Time or ScriptFile must be specified");
System.exit(-1);
}
conf.setLong(LG_ELAPSEDTIME, durations[0]);
conf.setLong(LG_STARTTIME, startTime);
if (scriptFile != null) {
conf.set(LG_SCRIPTFILE , scriptFile);
}
conf.set(LG_FLAGFILE, flagFile.toString());
// Now set the necessary conf variables that apply to run MR itself.
JobConf jobConf = new JobConf(conf, LoadGenerator.class);
jobConf.setJobName("NNLoadGeneratorViaMR");
jobConf.setNumMapTasks(numMapTasks);
jobConf.setNumReduceTasks(1); // 1 reducer to collect the results
jobConf.setOutputKeyClass(Text.class);
jobConf.setOutputValueClass(IntWritable.class);
jobConf.setMapperClass(MapperThatRunsNNLoadGenerator.class);
jobConf.setReducerClass(ReducerThatCollectsLGdata.class);
jobConf.setInputFormat(DummyInputFormat.class);
jobConf.setOutputFormat(TextOutputFormat.class);
// Explicitly set number of max map attempts to 1.
jobConf.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
jobConf.setSpeculativeExecution(false);
// This mapReduce job has no input but has output
FileOutputFormat.setOutputPath(jobConf, new Path(mrOutDir));
try {
JobClient.runJob(jobConf);
} catch (IOException e) {
System.err.println("Failed to run job: " + e.getMessage());
return -1;
}
return 0;
}
示例14: createDataJoinJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static JobConf createDataJoinJob(String args[]) throws IOException {
String inputDir = args[0];
String outputDir = args[1];
Class inputFormat = SequenceFileInputFormat.class;
if (args[2].compareToIgnoreCase("text") != 0) {
System.out.println("Using SequenceFileInputFormat: " + args[2]);
} else {
System.out.println("Using TextInputFormat: " + args[2]);
inputFormat = TextInputFormat.class;
}
int numOfReducers = Integer.parseInt(args[3]);
Class mapper = getClassByName(args[4]);
Class reducer = getClassByName(args[5]);
Class mapoutputValueClass = getClassByName(args[6]);
Class outputFormat = TextOutputFormat.class;
Class outputValueClass = Text.class;
if (args[7].compareToIgnoreCase("text") != 0) {
System.out.println("Using SequenceFileOutputFormat: " + args[7]);
outputFormat = SequenceFileOutputFormat.class;
outputValueClass = getClassByName(args[7]);
} else {
System.out.println("Using TextOutputFormat: " + args[7]);
}
long maxNumOfValuesPerGroup = 100;
String jobName = "";
if (args.length > 8) {
maxNumOfValuesPerGroup = Long.parseLong(args[8]);
}
if (args.length > 9) {
jobName = args[9];
}
Configuration defaults = new Configuration();
JobConf job = new JobConf(defaults, DataJoinJob.class);
job.setJobName("DataJoinJob: " + jobName);
FileSystem fs = FileSystem.get(defaults);
fs.delete(new Path(outputDir), true);
FileInputFormat.setInputPaths(job, inputDir);
job.setInputFormat(inputFormat);
job.setMapperClass(mapper);
FileOutputFormat.setOutputPath(job, new Path(outputDir));
job.setOutputFormat(outputFormat);
SequenceFileOutputFormat.setOutputCompressionType(job,
SequenceFile.CompressionType.BLOCK);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(mapoutputValueClass);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(outputValueClass);
job.setReducerClass(reducer);
job.setNumMapTasks(1);
job.setNumReduceTasks(numOfReducers);
job.setLong("datajoin.maxNumOfValuesPerGroup", maxNumOfValuesPerGroup);
return job;
}