本文整理匯總了Java中org.apache.hadoop.mapred.JobConf.setOutputFormat方法的典型用法代碼示例。如果您正苦於以下問題:Java JobConf.setOutputFormat方法的具體用法?Java JobConf.setOutputFormat怎麽用?Java JobConf.setOutputFormat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapred.JobConf
的用法示例。
在下文中一共展示了JobConf.setOutputFormat方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: testInputFormat
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
void testInputFormat(Class<? extends InputFormat> clazz) throws IOException {
final JobConf job = MapreduceTestingShim.getJobConf(mrCluster);
job.setInputFormat(clazz);
job.setOutputFormat(NullOutputFormat.class);
job.setMapperClass(ExampleVerifier.class);
job.setNumReduceTasks(0);
LOG.debug("submitting job.");
final RunningJob run = JobClient.runJob(job);
assertTrue("job failed!", run.isSuccessful());
assertEquals("Saw the wrong number of instances of the filtered-for row.", 2, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "aaa").getCounter());
assertEquals("Saw any instances of the filtered out row.", 0, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "bbb").getCounter());
assertEquals("Saw the wrong number of instances of columnA.", 1, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnA").getCounter());
assertEquals("Saw the wrong number of instances of columnB.", 1, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnB").getCounter());
assertEquals("Saw the wrong count of values for the filtered-for row.", 2, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value aaa").getCounter());
assertEquals("Saw the wrong count of values for the filtered-out row.", 0, run.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value bbb").getCounter());
}
示例2: getJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Sets up a job conf for the given job using the given config object. Ensures
* that the correct input format is set, the mapper and and reducer class and
* the input and output keys and value classes along with any other job
* configuration.
*
* @param config
* @return JobConf representing the job to be ran
* @throws IOException
*/
private JobConf getJob(ConfigExtractor config) throws IOException {
JobConf job = new JobConf(config.getConfig(), SliveTest.class);
job.setInputFormat(DummyInputFormat.class);
FileOutputFormat.setOutputPath(job, config.getOutputPath());
job.setMapperClass(SliveMapper.class);
job.setPartitionerClass(SlivePartitioner.class);
job.setReducerClass(SliveReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setOutputFormat(TextOutputFormat.class);
TextOutputFormat.setCompressOutput(job, false);
job.setNumReduceTasks(config.getReducerAmount());
job.setNumMapTasks(config.getMapAmount());
return job;
}
示例3: initTableReduceJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Use this before submitting a TableReduce job. It will
* appropriately set up the JobConf.
*
* @param table The output table.
* @param reducer The reducer class to use.
* @param job The current job configuration to adjust.
* @param partitioner Partitioner to use. Pass <code>null</code> to use
* default partitioner.
* @param addDependencyJars upload HBase jars and jars for any of the configured
* job classes via the distributed cache (tmpjars).
* @throws IOException When determining the region count fails.
*/
public static void initTableReduceJob(String table,
Class<? extends TableReduce> reducer, JobConf job, Class partitioner,
boolean addDependencyJars) throws IOException {
job.setOutputFormat(TableOutputFormat.class);
job.setReducerClass(reducer);
job.set(TableOutputFormat.OUTPUT_TABLE, table);
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(Put.class);
job.setStrings("io.serializations", job.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName());
if (partitioner == HRegionPartitioner.class) {
job.setPartitionerClass(HRegionPartitioner.class);
int regions =
MetaTableAccessor.getRegionCount(HBaseConfiguration.create(job), TableName.valueOf(table));
if (job.getNumReduceTasks() > regions) {
job.setNumReduceTasks(regions);
}
} else if (partitioner != null) {
job.setPartitionerClass(partitioner);
}
if (addDependencyJars) {
addDependencyJars(job);
}
initCredentials(job);
}
示例4: setOutput
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static DBConfiguration setOutput(JobConf job, String tableName) {
job.setOutputFormat(DBOutputFormat.class);
job.setReduceSpeculativeExecution(false);
DBConfiguration dbConf = new DBConfiguration(job);
dbConf.setOutputTableName(tableName);
return dbConf;
}
示例5: setOutputFormatClass
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Set the underlying output format for LazyOutputFormat.
* @param job the {@link JobConf} to modify
* @param theClass the underlying class
*/
@SuppressWarnings("unchecked")
public static void setOutputFormatClass(JobConf job,
Class<? extends OutputFormat> theClass) {
job.setOutputFormat(LazyOutputFormat.class);
job.setClass("mapreduce.output.lazyoutputformat.outputformat", theClass, OutputFormat.class);
}
示例6: doTestWithMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void doTestWithMapReduce(HBaseTestingUtility util, TableName tableName,
String snapshotName, byte[] startRow, byte[] endRow, Path tableDir, int numRegions,
int expectedNumSplits, boolean shutdownCluster) throws Exception {
//create the table and snapshot
createTableAndSnapshot(util, tableName, snapshotName, startRow, endRow, numRegions);
if (shutdownCluster) {
util.shutdownMiniHBaseCluster();
}
try {
// create the job
JobConf jobConf = new JobConf(util.getConfiguration());
jobConf.setJarByClass(util.getClass());
org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil.addDependencyJars(jobConf,
TestTableSnapshotInputFormat.class);
TableMapReduceUtil.initTableSnapshotMapJob(snapshotName, COLUMNS,
TestTableSnapshotMapper.class, ImmutableBytesWritable.class,
NullWritable.class, jobConf, true, tableDir);
jobConf.setReducerClass(TestTableSnapshotInputFormat.TestTableSnapshotReducer.class);
jobConf.setNumReduceTasks(1);
jobConf.setOutputFormat(NullOutputFormat.class);
RunningJob job = JobClient.runJob(jobConf);
Assert.assertTrue(job.isSuccessful());
} finally {
if (!shutdownCluster) {
util.getHBaseAdmin().deleteSnapshot(snapshotName);
util.deleteTable(tableName);
}
}
}
示例7: submitAsMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Based on args we submit the LoadGenerator as MR job.
* Number of MapTasks is numMapTasks
* @return exitCode for job submission
*/
private int submitAsMapReduce() {
System.out.println("Running as a MapReduce job with " +
numMapTasks + " mapTasks; Output to file " + mrOutDir);
Configuration conf = new Configuration(getConf());
// First set all the args of LoadGenerator as Conf vars to pass to MR tasks
conf.set(LG_ROOT , root.toString());
conf.setInt(LG_MAXDELAYBETWEENOPS, maxDelayBetweenOps);
conf.setInt(LG_NUMOFTHREADS, numOfThreads);
conf.set(LG_READPR, readProbs[0]+""); //Pass Double as string
conf.set(LG_WRITEPR, writeProbs[0]+""); //Pass Double as string
conf.setLong(LG_SEED, seed); //No idea what this is
conf.setInt(LG_NUMMAPTASKS, numMapTasks);
if (scriptFile == null && durations[0] <=0) {
System.err.println("When run as a MapReduce job, elapsed Time or ScriptFile must be specified");
System.exit(-1);
}
conf.setLong(LG_ELAPSEDTIME, durations[0]);
conf.setLong(LG_STARTTIME, startTime);
if (scriptFile != null) {
conf.set(LG_SCRIPTFILE , scriptFile);
}
conf.set(LG_FLAGFILE, flagFile.toString());
// Now set the necessary conf variables that apply to run MR itself.
JobConf jobConf = new JobConf(conf, LoadGenerator.class);
jobConf.setJobName("NNLoadGeneratorViaMR");
jobConf.setNumMapTasks(numMapTasks);
jobConf.setNumReduceTasks(1); // 1 reducer to collect the results
jobConf.setOutputKeyClass(Text.class);
jobConf.setOutputValueClass(IntWritable.class);
jobConf.setMapperClass(MapperThatRunsNNLoadGenerator.class);
jobConf.setReducerClass(ReducerThatCollectsLGdata.class);
jobConf.setInputFormat(DummyInputFormat.class);
jobConf.setOutputFormat(TextOutputFormat.class);
// Explicitly set number of max map attempts to 1.
jobConf.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
jobConf.setSpeculativeExecution(false);
// This mapReduce job has no input but has output
FileOutputFormat.setOutputPath(jobConf, new Path(mrOutDir));
try {
JobClient.runJob(jobConf);
} catch (IOException e) {
System.err.println("Failed to run job: " + e.getMessage());
return -1;
}
return 0;
}
示例8: setupPipesJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static void setupPipesJob(JobConf conf) throws IOException {
// default map output types to Text
if (!getIsJavaMapper(conf)) {
conf.setMapRunnerClass(PipesMapRunner.class);
// Save the user's partitioner and hook in our's.
setJavaPartitioner(conf, conf.getPartitionerClass());
conf.setPartitionerClass(PipesPartitioner.class);
}
if (!getIsJavaReducer(conf)) {
conf.setReducerClass(PipesReducer.class);
if (!getIsJavaRecordWriter(conf)) {
conf.setOutputFormat(NullOutputFormat.class);
}
}
String textClassname = Text.class.getName();
setIfUnset(conf, MRJobConfig.MAP_OUTPUT_KEY_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.MAP_OUTPUT_VALUE_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.OUTPUT_KEY_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.OUTPUT_VALUE_CLASS, textClassname);
// Use PipesNonJavaInputFormat if necessary to handle progress reporting
// from C++ RecordReaders ...
if (!getIsJavaRecordReader(conf) && !getIsJavaMapper(conf)) {
conf.setClass(Submitter.INPUT_FORMAT,
conf.getInputFormat().getClass(), InputFormat.class);
conf.setInputFormat(PipesNonJavaInputFormat.class);
}
String exec = getExecutable(conf);
if (exec == null) {
throw new IllegalArgumentException("No application program defined.");
}
// add default debug script only when executable is expressed as
// <path>#<executable>
if (exec.contains("#")) {
// set default gdb commands for map and reduce task
String defScript = "$HADOOP_PREFIX/src/c++/pipes/debug/pipes-default-script";
setIfUnset(conf, MRJobConfig.MAP_DEBUG_SCRIPT,defScript);
setIfUnset(conf, MRJobConfig.REDUCE_DEBUG_SCRIPT,defScript);
}
URI[] fileCache = DistributedCache.getCacheFiles(conf);
if (fileCache == null) {
fileCache = new URI[1];
} else {
URI[] tmp = new URI[fileCache.length+1];
System.arraycopy(fileCache, 0, tmp, 1, fileCache.length);
fileCache = tmp;
}
try {
fileCache[0] = new URI(exec);
} catch (URISyntaxException e) {
IOException ie = new IOException("Problem parsing execable URI " + exec);
ie.initCause(e);
throw ie;
}
DistributedCache.setCacheFiles(fileCache, conf);
}
示例9: createDataJoinJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static JobConf createDataJoinJob(String args[]) throws IOException {
String inputDir = args[0];
String outputDir = args[1];
Class inputFormat = SequenceFileInputFormat.class;
if (args[2].compareToIgnoreCase("text") != 0) {
System.out.println("Using SequenceFileInputFormat: " + args[2]);
} else {
System.out.println("Using TextInputFormat: " + args[2]);
inputFormat = TextInputFormat.class;
}
int numOfReducers = Integer.parseInt(args[3]);
Class mapper = getClassByName(args[4]);
Class reducer = getClassByName(args[5]);
Class mapoutputValueClass = getClassByName(args[6]);
Class outputFormat = TextOutputFormat.class;
Class outputValueClass = Text.class;
if (args[7].compareToIgnoreCase("text") != 0) {
System.out.println("Using SequenceFileOutputFormat: " + args[7]);
outputFormat = SequenceFileOutputFormat.class;
outputValueClass = getClassByName(args[7]);
} else {
System.out.println("Using TextOutputFormat: " + args[7]);
}
long maxNumOfValuesPerGroup = 100;
String jobName = "";
if (args.length > 8) {
maxNumOfValuesPerGroup = Long.parseLong(args[8]);
}
if (args.length > 9) {
jobName = args[9];
}
Configuration defaults = new Configuration();
JobConf job = new JobConf(defaults, DataJoinJob.class);
job.setJobName("DataJoinJob: " + jobName);
FileSystem fs = FileSystem.get(defaults);
fs.delete(new Path(outputDir), true);
FileInputFormat.setInputPaths(job, inputDir);
job.setInputFormat(inputFormat);
job.setMapperClass(mapper);
FileOutputFormat.setOutputPath(job, new Path(outputDir));
job.setOutputFormat(outputFormat);
SequenceFileOutputFormat.setOutputCompressionType(job,
SequenceFile.CompressionType.BLOCK);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(mapoutputValueClass);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(outputValueClass);
job.setReducerClass(reducer);
job.setNumMapTasks(1);
job.setNumReduceTasks(numOfReducers);
job.setLong("datajoin.maxNumOfValuesPerGroup", maxNumOfValuesPerGroup);
return job;
}
示例10: main
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
JetInstance client = Jet.newJetClient();
String inputPath = args[0];
String outputPath = args[1] + "_" + System.currentTimeMillis();
DAG dag = new DAG();
JobConf conf = new JobConf();
conf.setOutputFormat(TextOutputFormat.class);
conf.setInputFormat(TextInputFormat.class);
TextInputFormat.addInputPath(conf, new Path(inputPath));
TextOutputFormat.setOutputPath(conf, new Path(outputPath));
Vertex producer = dag.newVertex("reader", readHdfsP(conf,
(k, v) -> v.toString())).localParallelism(3);
Vertex tokenizer = dag.newVertex("tokenizer",
flatMapP((String line) -> {
StringTokenizer s = new StringTokenizer(line);
return () -> s.hasMoreTokens() ? s.nextToken() : null;
})
);
// word -> (word, count)
Vertex accumulate = dag.newVertex("accumulate", accumulateByKeyP(wholeItem(), counting()));
// (word, count) -> (word, count)
Vertex combine = dag.newVertex("combine", combineByKeyP(counting()));
Vertex consumer = dag.newVertex("writer", writeHdfsP(conf, entryKey(), entryValue())).localParallelism(1);
dag.edge(between(producer, tokenizer))
.edge(between(tokenizer, accumulate)
.partitioned(wholeItem(), HASH_CODE))
.edge(between(accumulate, combine)
.distributed()
.partitioned(entryKey()))
.edge(between(combine, consumer));
JobConfig config = new JobConfig();
config.addClass(JetWordCount.class);
try {
long start = System.currentTimeMillis();
client.newJob(dag, config).join();
System.out.println("Time=" + (System.currentTimeMillis() - start));
} finally {
client.shutdown();
}
}