本文整理匯總了Java中org.apache.hadoop.mapred.JobConf.setReducerClass方法的典型用法代碼示例。如果您正苦於以下問題:Java JobConf.setReducerClass方法的具體用法?Java JobConf.setReducerClass怎麽用?Java JobConf.setReducerClass使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapred.JobConf
的用法示例。
在下文中一共展示了JobConf.setReducerClass方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: runTests
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Run the test
*
* @throws IOException on error
*/
public static void runTests() throws IOException {
config.setLong("io.bytes.per.checksum", bytesPerChecksum);
JobConf job = new JobConf(config, NNBench.class);
job.setJobName("NNBench-" + operation);
FileInputFormat.setInputPaths(job, new Path(baseDir, CONTROL_DIR_NAME));
job.setInputFormat(SequenceFileInputFormat.class);
// Explicitly set number of max map attempts to 1.
job.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
job.setSpeculativeExecution(false);
job.setMapperClass(NNBenchMapper.class);
job.setReducerClass(NNBenchReducer.class);
FileOutputFormat.setOutputPath(job, new Path(baseDir, OUTPUT_DIR_NAME));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks((int) numberOfReduces);
JobClient.runJob(job);
}
示例2: runIOTest
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private void runIOTest(
Class<? extends Mapper<Text, LongWritable, Text, Text>> mapperClass,
Path outputDir) throws IOException {
JobConf job = new JobConf(config, TestDFSIO.class);
FileInputFormat.setInputPaths(job, getControlDir(config));
job.setInputFormat(SequenceFileInputFormat.class);
job.setMapperClass(mapperClass);
job.setReducerClass(AccumulatingReducer.class);
FileOutputFormat.setOutputPath(job, outputDir);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(1);
JobClient.runJob(job);
}
示例3: getJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Sets up a job conf for the given job using the given config object. Ensures
* that the correct input format is set, the mapper and and reducer class and
* the input and output keys and value classes along with any other job
* configuration.
*
* @param config
* @return JobConf representing the job to be ran
* @throws IOException
*/
private JobConf getJob(ConfigExtractor config) throws IOException {
JobConf job = new JobConf(config.getConfig(), SliveTest.class);
job.setInputFormat(DummyInputFormat.class);
FileOutputFormat.setOutputPath(job, config.getOutputPath());
job.setMapperClass(SliveMapper.class);
job.setPartitionerClass(SlivePartitioner.class);
job.setReducerClass(SliveReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setOutputFormat(TextOutputFormat.class);
TextOutputFormat.setCompressOutput(job, false);
job.setNumReduceTasks(config.getReducerAmount());
job.setNumMapTasks(config.getMapAmount());
return job;
}
示例4: joinAs
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static void joinAs(String jointype,
Class<? extends SimpleCheckerBase> c) throws Exception {
final int srcs = 4;
Configuration conf = new Configuration();
JobConf job = new JobConf(conf, c);
Path base = cluster.getFileSystem().makeQualified(new Path("/"+jointype));
Path[] src = writeSimpleSrc(base, conf, srcs);
job.set("mapreduce.join.expr", CompositeInputFormat.compose(jointype,
SequenceFileInputFormat.class, src));
job.setInt("testdatamerge.sources", srcs);
job.setInputFormat(CompositeInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(base, "out"));
job.setMapperClass(c);
job.setReducerClass(c);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
JobClient.runJob(job);
base.getFileSystem(job).delete(base, true);
}
示例5: testEmptyJoin
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public void testEmptyJoin() throws Exception {
JobConf job = new JobConf();
Path base = cluster.getFileSystem().makeQualified(new Path("/empty"));
Path[] src = { new Path(base,"i0"), new Path("i1"), new Path("i2") };
job.set("mapreduce.join.expr", CompositeInputFormat.compose("outer",
Fake_IF.class, src));
job.setInputFormat(CompositeInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(base, "out"));
job.setMapperClass(IdentityMapper.class);
job.setReducerClass(IdentityReducer.class);
job.setOutputKeyClass(IncomparableKey.class);
job.setOutputValueClass(NullWritable.class);
JobClient.runJob(job);
base.getFileSystem(job).delete(base, true);
}
示例6: createCopyJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Creates a simple copy job.
*
* @param indirs List of input directories.
* @param outdir Output directory.
* @return JobConf initialised for a simple copy job.
* @throws Exception If an error occurs creating job configuration.
*/
static JobConf createCopyJob(List<Path> indirs, Path outdir) throws Exception {
Configuration defaults = new Configuration();
JobConf theJob = new JobConf(defaults, TestJobControl.class);
theJob.setJobName("DataMoveJob");
FileInputFormat.setInputPaths(theJob, indirs.toArray(new Path[0]));
theJob.setMapperClass(DataCopy.class);
FileOutputFormat.setOutputPath(theJob, outdir);
theJob.setOutputKeyClass(Text.class);
theJob.setOutputValueClass(Text.class);
theJob.setReducerClass(DataCopy.class);
theJob.setNumMapTasks(12);
theJob.setNumReduceTasks(4);
return theJob;
}
示例7: initTableReduceJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Use this before submitting a TableReduce job. It will
* appropriately set up the JobConf.
*
* @param table The output table.
* @param reducer The reducer class to use.
* @param job The current job configuration to adjust.
* @param partitioner Partitioner to use. Pass <code>null</code> to use
* default partitioner.
* @param addDependencyJars upload HBase jars and jars for any of the configured
* job classes via the distributed cache (tmpjars).
* @throws IOException When determining the region count fails.
*/
public static void initTableReduceJob(String table,
Class<? extends TableReduce> reducer, JobConf job, Class partitioner,
boolean addDependencyJars) throws IOException {
job.setOutputFormat(TableOutputFormat.class);
job.setReducerClass(reducer);
job.set(TableOutputFormat.OUTPUT_TABLE, table);
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(Put.class);
job.setStrings("io.serializations", job.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName());
if (partitioner == HRegionPartitioner.class) {
job.setPartitionerClass(HRegionPartitioner.class);
int regions =
MetaTableAccessor.getRegionCount(HBaseConfiguration.create(job), TableName.valueOf(table));
if (job.getNumReduceTasks() > regions) {
job.setNumReduceTasks(regions);
}
} else if (partitioner != null) {
job.setPartitionerClass(partitioner);
}
if (addDependencyJars) {
addDependencyJars(job);
}
initCredentials(job);
}
示例8: runJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Override
protected void runJob(String jobName, Configuration c, List<Scan> scans)
throws IOException, InterruptedException, ClassNotFoundException {
JobConf job = new JobConf(TEST_UTIL.getConfiguration());
job.setJobName(jobName);
job.setMapperClass(Mapper.class);
job.setReducerClass(Reducer.class);
TableMapReduceUtil.initMultiTableSnapshotMapperJob(getSnapshotScanMapping(scans), Mapper.class,
ImmutableBytesWritable.class, ImmutableBytesWritable.class, job, true, restoreDir);
TableMapReduceUtil.addDependencyJars(job);
job.setReducerClass(Reducer.class);
job.setNumReduceTasks(1); // one to get final "first" and "last" key
FileOutputFormat.setOutputPath(job, new Path(job.getJobName()));
LOG.info("Started " + job.getJobName());
RunningJob runningJob = JobClient.runJob(job);
runningJob.waitForCompletion();
assertTrue(runningJob.isSuccessful());
LOG.info("After map/reduce completion - job " + jobName);
}
示例9: run
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public int run(String[] argv) throws IOException {
if (argv.length < 2) {
System.out.println("ExternalMapReduce <input> <output>");
return -1;
}
Path outDir = new Path(argv[1]);
Path input = new Path(argv[0]);
JobConf testConf = new JobConf(getConf(), ExternalMapReduce.class);
//try to load a class from libjar
try {
testConf.getClassByName("testjar.ClassWordCount");
} catch (ClassNotFoundException e) {
System.out.println("Could not find class from libjar");
return -1;
}
testConf.setJobName("external job");
FileInputFormat.setInputPaths(testConf, input);
FileOutputFormat.setOutputPath(testConf, outDir);
testConf.setMapperClass(MapClass.class);
testConf.setReducerClass(Reduce.class);
testConf.setNumReduceTasks(1);
JobClient.runJob(testConf);
return 0;
}
示例10: runJobFail
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void runJobFail(JobConf conf, Path inDir, Path outDir)
throws IOException, InterruptedException {
conf.setJobName("test-job-fail");
conf.setMapperClass(FailMapper.class);
conf.setJarByClass(FailMapper.class);
conf.setReducerClass(IdentityReducer.class);
conf.setMaxMapAttempts(1);
boolean success = runJob(conf, inDir, outDir, 1, 0);
Assert.assertFalse("Job expected to fail succeeded", success);
}
示例11: runJobSucceed
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void runJobSucceed(JobConf conf, Path inDir, Path outDir)
throws IOException, InterruptedException {
conf.setJobName("test-job-succeed");
conf.setMapperClass(IdentityMapper.class);
//conf.setJar(new File(MiniMRYarnCluster.APPJAR).getAbsolutePath());
conf.setReducerClass(IdentityReducer.class);
boolean success = runJob(conf, inDir, outDir, 1 , 1);
Assert.assertTrue("Job expected to succeed failed", success);
}
示例12: testCombinerShouldUpdateTheReporter
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
public void testCombinerShouldUpdateTheReporter() throws Exception {
JobConf conf = new JobConf(mrCluster.getConfig());
int numMaps = 5;
int numReds = 2;
Path in = new Path(mrCluster.getTestWorkDir().getAbsolutePath(),
"testCombinerShouldUpdateTheReporter-in");
Path out = new Path(mrCluster.getTestWorkDir().getAbsolutePath(),
"testCombinerShouldUpdateTheReporter-out");
createInputOutPutFolder(in, out, numMaps);
conf.setJobName("test-job-with-combiner");
conf.setMapperClass(IdentityMapper.class);
conf.setCombinerClass(MyCombinerToCheckReporter.class);
//conf.setJarByClass(MyCombinerToCheckReporter.class);
conf.setReducerClass(IdentityReducer.class);
DistributedCache.addFileToClassPath(TestMRJobs.APP_JAR, conf);
conf.setOutputCommitter(CustomOutputCommitter.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(conf, in);
FileOutputFormat.setOutputPath(conf, out);
conf.setNumMapTasks(numMaps);
conf.setNumReduceTasks(numReds);
runJob(conf);
}
示例13: doTestWithMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static void doTestWithMapReduce(HBaseTestingUtility util, TableName tableName,
String snapshotName, byte[] startRow, byte[] endRow, Path tableDir, int numRegions,
int expectedNumSplits, boolean shutdownCluster) throws Exception {
//create the table and snapshot
createTableAndSnapshot(util, tableName, snapshotName, startRow, endRow, numRegions);
if (shutdownCluster) {
util.shutdownMiniHBaseCluster();
}
try {
// create the job
JobConf jobConf = new JobConf(util.getConfiguration());
jobConf.setJarByClass(util.getClass());
org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil.addDependencyJars(jobConf,
TestTableSnapshotInputFormat.class);
TableMapReduceUtil.initTableSnapshotMapJob(snapshotName, COLUMNS,
TestTableSnapshotMapper.class, ImmutableBytesWritable.class,
NullWritable.class, jobConf, true, tableDir);
jobConf.setReducerClass(TestTableSnapshotInputFormat.TestTableSnapshotReducer.class);
jobConf.setNumReduceTasks(1);
jobConf.setOutputFormat(NullOutputFormat.class);
RunningJob job = JobClient.runJob(jobConf);
Assert.assertTrue(job.isSuccessful());
} finally {
if (!shutdownCluster) {
util.getHBaseAdmin().deleteSnapshot(snapshotName);
util.deleteTable(tableName);
}
}
}
示例14: submitAsMapReduce
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Based on args we submit the LoadGenerator as MR job.
* Number of MapTasks is numMapTasks
* @return exitCode for job submission
*/
private int submitAsMapReduce() {
System.out.println("Running as a MapReduce job with " +
numMapTasks + " mapTasks; Output to file " + mrOutDir);
Configuration conf = new Configuration(getConf());
// First set all the args of LoadGenerator as Conf vars to pass to MR tasks
conf.set(LG_ROOT , root.toString());
conf.setInt(LG_MAXDELAYBETWEENOPS, maxDelayBetweenOps);
conf.setInt(LG_NUMOFTHREADS, numOfThreads);
conf.set(LG_READPR, readProbs[0]+""); //Pass Double as string
conf.set(LG_WRITEPR, writeProbs[0]+""); //Pass Double as string
conf.setLong(LG_SEED, seed); //No idea what this is
conf.setInt(LG_NUMMAPTASKS, numMapTasks);
if (scriptFile == null && durations[0] <=0) {
System.err.println("When run as a MapReduce job, elapsed Time or ScriptFile must be specified");
System.exit(-1);
}
conf.setLong(LG_ELAPSEDTIME, durations[0]);
conf.setLong(LG_STARTTIME, startTime);
if (scriptFile != null) {
conf.set(LG_SCRIPTFILE , scriptFile);
}
conf.set(LG_FLAGFILE, flagFile.toString());
// Now set the necessary conf variables that apply to run MR itself.
JobConf jobConf = new JobConf(conf, LoadGenerator.class);
jobConf.setJobName("NNLoadGeneratorViaMR");
jobConf.setNumMapTasks(numMapTasks);
jobConf.setNumReduceTasks(1); // 1 reducer to collect the results
jobConf.setOutputKeyClass(Text.class);
jobConf.setOutputValueClass(IntWritable.class);
jobConf.setMapperClass(MapperThatRunsNNLoadGenerator.class);
jobConf.setReducerClass(ReducerThatCollectsLGdata.class);
jobConf.setInputFormat(DummyInputFormat.class);
jobConf.setOutputFormat(TextOutputFormat.class);
// Explicitly set number of max map attempts to 1.
jobConf.setMaxMapAttempts(1);
// Explicitly turn off speculative execution
jobConf.setSpeculativeExecution(false);
// This mapReduce job has no input but has output
FileOutputFormat.setOutputPath(jobConf, new Path(mrOutDir));
try {
JobClient.runJob(jobConf);
} catch (IOException e) {
System.err.println("Failed to run job: " + e.getMessage());
return -1;
}
return 0;
}
示例15: setupPipesJob
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
private static void setupPipesJob(JobConf conf) throws IOException {
// default map output types to Text
if (!getIsJavaMapper(conf)) {
conf.setMapRunnerClass(PipesMapRunner.class);
// Save the user's partitioner and hook in our's.
setJavaPartitioner(conf, conf.getPartitionerClass());
conf.setPartitionerClass(PipesPartitioner.class);
}
if (!getIsJavaReducer(conf)) {
conf.setReducerClass(PipesReducer.class);
if (!getIsJavaRecordWriter(conf)) {
conf.setOutputFormat(NullOutputFormat.class);
}
}
String textClassname = Text.class.getName();
setIfUnset(conf, MRJobConfig.MAP_OUTPUT_KEY_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.MAP_OUTPUT_VALUE_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.OUTPUT_KEY_CLASS, textClassname);
setIfUnset(conf, MRJobConfig.OUTPUT_VALUE_CLASS, textClassname);
// Use PipesNonJavaInputFormat if necessary to handle progress reporting
// from C++ RecordReaders ...
if (!getIsJavaRecordReader(conf) && !getIsJavaMapper(conf)) {
conf.setClass(Submitter.INPUT_FORMAT,
conf.getInputFormat().getClass(), InputFormat.class);
conf.setInputFormat(PipesNonJavaInputFormat.class);
}
String exec = getExecutable(conf);
if (exec == null) {
throw new IllegalArgumentException("No application program defined.");
}
// add default debug script only when executable is expressed as
// <path>#<executable>
if (exec.contains("#")) {
// set default gdb commands for map and reduce task
String defScript = "$HADOOP_PREFIX/src/c++/pipes/debug/pipes-default-script";
setIfUnset(conf, MRJobConfig.MAP_DEBUG_SCRIPT,defScript);
setIfUnset(conf, MRJobConfig.REDUCE_DEBUG_SCRIPT,defScript);
}
URI[] fileCache = DistributedCache.getCacheFiles(conf);
if (fileCache == null) {
fileCache = new URI[1];
} else {
URI[] tmp = new URI[fileCache.length+1];
System.arraycopy(fileCache, 0, tmp, 1, fileCache.length);
fileCache = tmp;
}
try {
fileCache[0] = new URI(exec);
} catch (URISyntaxException e) {
IOException ie = new IOException("Problem parsing execable URI " + exec);
ie.initCause(e);
throw ie;
}
DistributedCache.setCacheFiles(fileCache, conf);
}