本文整理匯總了Java中org.apache.hadoop.mapred.JobConf.getBoolean方法的典型用法代碼示例。如果您正苦於以下問題:Java JobConf.getBoolean方法的具體用法?Java JobConf.getBoolean怎麽用?Java JobConf.getBoolean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapred.JobConf
的用法示例。
在下文中一共展示了JobConf.getBoolean方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: configure
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/** Mapper configuration.
* Extracts source and destination file system, as well as
* top-level paths on source and destination directories.
* Gets the named file systems, to be used later in map.
*/
public void configure(JobConf job)
{
destPath = new Path(job.get(DST_DIR_LABEL, "/"));
try {
destFileSys = destPath.getFileSystem(job);
} catch (IOException ex) {
throw new RuntimeException("Unable to get the named file system.", ex);
}
sizeBuf = job.getInt("copy.buf.size", 128 * 1024);
buffer = new byte[sizeBuf];
ignoreReadFailures = job.getBoolean(Options.IGNORE_READ_FAILURES.propertyname, false);
preserve_status = job.getBoolean(Options.PRESERVE_STATUS.propertyname, false);
if (preserve_status) {
preseved = FileAttribute.parse(job.get(PRESERVE_STATUS_LABEL));
}
update = job.getBoolean(Options.UPDATE.propertyname, false);
overwrite = !update && job.getBoolean(Options.OVERWRITE.propertyname, false);
skipCRCCheck = job.getBoolean(Options.SKIPCRC.propertyname, false);
this.job = job;
}
示例2: configure
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public void configure(JobConf job) {
super.configure(job);
//disable the auto increment of the counter. For streaming, no of
//processed records could be different(equal or less) than the no of
//records input.
SkipBadRecords.setAutoIncrReducerProcCount(job, false);
skipping = job.getBoolean(MRJobConfig.SKIP_RECORDS, false);
try {
reduceOutFieldSeparator = job_.get("stream.reduce.output.field.separator", "\t").getBytes("UTF-8");
reduceInputFieldSeparator = job_.get("stream.reduce.input.field.separator", "\t").getBytes("UTF-8");
this.numOfReduceOutputKeyFields = job_.getInt("stream.num.reduce.output.key.fields", 1);
} catch (UnsupportedEncodingException e) {
throw new RuntimeException("The current system does not support UTF-8 encoding!", e);
}
}
示例3: configure
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public void configure(JobConf job) {
super.configure(job);
//disable the auto increment of the counter. For streaming, no of
//processed records could be different(equal or less) than the no of
//records input.
SkipBadRecords.setAutoIncrMapperProcCount(job, false);
skipping = job.getBoolean(MRJobConfig.SKIP_RECORDS, false);
if (mapInputWriterClass_.getCanonicalName().equals(TextInputWriter.class.getCanonicalName())) {
String inputFormatClassName = job.getClass("mapred.input.format.class", TextInputFormat.class).getCanonicalName();
ignoreKey = job.getBoolean("stream.map.input.ignoreKey",
inputFormatClassName.equals(TextInputFormat.class.getCanonicalName()));
}
try {
mapOutputFieldSeparator = job.get("stream.map.output.field.separator", "\t").getBytes("UTF-8");
mapInputFieldSeparator = job.get("stream.map.input.field.separator", "\t").getBytes("UTF-8");
numOfMapOutputKeyFields = job.getInt("stream.num.map.output.key.fields", 1);
} catch (UnsupportedEncodingException e) {
throw new RuntimeException("The current system does not support UTF-8 encoding!", e);
}
}
示例4: testSetReducerWithReducerByValueAsTrue
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
public void testSetReducerWithReducerByValueAsTrue() throws Exception {
JobConf jobConf = new JobConf();
JobConf reducerConf = new JobConf();
Chain.setReducer(jobConf, MyReducer.class, Object.class, Object.class,
Object.class, Object.class, true, reducerConf);
boolean reduceByValue = reducerConf.getBoolean("chain.reducer.byValue",
false);
Assert.assertEquals("It should set chain.reducer.byValue as true "
+ "in reducerConf when we give value as true", true, reduceByValue);
}
示例5: testSetReducerWithReducerByValueAsFalse
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
@Test
public void testSetReducerWithReducerByValueAsFalse() throws Exception {
JobConf jobConf = new JobConf();
JobConf reducerConf = new JobConf();
Chain.setReducer(jobConf, MyReducer.class, Object.class, Object.class,
Object.class, Object.class, false, reducerConf);
boolean reduceByValue = reducerConf.getBoolean("chain.reducer.byValue",
true);
Assert.assertEquals("It should set chain.reducer.byValue as false "
+ "in reducerConf when we give value as false", false, reduceByValue);
}
示例6: configure
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public void configure(JobConf job) {
this.job = job;
//disable the auto increment of the counter. For pipes, no of processed
//records could be different(equal or less) than the no of records input.
SkipBadRecords.setAutoIncrReducerProcCount(job, false);
skipping = job.getBoolean(MRJobConfig.SKIP_RECORDS, false);
}
示例7: ShuffleSchedulerImpl
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public ShuffleSchedulerImpl(JobConf job, TaskStatus status,
TaskAttemptID reduceId,
ExceptionReporter reporter,
Progress progress,
Counters.Counter shuffledMapsCounter,
Counters.Counter reduceShuffleBytes,
Counters.Counter failedShuffleCounter) {
totalMaps = job.getNumMapTasks();
abortFailureLimit = Math.max(30, totalMaps / 10);
copyTimeTracker = new CopyTimeTracker();
remainingMaps = totalMaps;
finishedMaps = new boolean[remainingMaps];
this.reporter = reporter;
this.status = status;
this.reduceId = reduceId;
this.progress = progress;
this.shuffledMapsCounter = shuffledMapsCounter;
this.reduceShuffleBytes = reduceShuffleBytes;
this.failedShuffleCounter = failedShuffleCounter;
this.startTime = Time.monotonicNow();
lastProgressTime = startTime;
referee.start();
this.maxFailedUniqueFetches = Math.min(totalMaps, 5);
this.maxFetchFailuresBeforeReporting = job.getInt(
MRJobConfig.SHUFFLE_FETCH_FAILURES, REPORT_FAILURE_LIMIT);
this.reportReadErrorImmediately = job.getBoolean(
MRJobConfig.SHUFFLE_NOTIFY_READERROR, true);
this.maxDelay = job.getLong(MRJobConfig.MAX_SHUFFLE_FETCH_RETRY_DELAY,
MRJobConfig.DEFAULT_MAX_SHUFFLE_FETCH_RETRY_DELAY);
this.maxHostFailures = job.getInt(
MRJobConfig.MAX_SHUFFLE_FETCH_HOST_FAILURES,
MRJobConfig.DEFAULT_MAX_SHUFFLE_FETCH_HOST_FAILURES);
}
示例8: HiveReaderSetting
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public HiveReaderSetting( final FileSplit split, final JobConf job ){
config = new Configuration();
disableSkipBlock = job.getBoolean( "mds.disable.block.skip" , false );
disableFilterPushdown = job.getBoolean( "mds.disable.filter.pushdown" , false );
Set<String> pathNameSet= createPathSet( split.getPath() );
List<ExprNodeGenericFuncDesc> filterExprs = new ArrayList<ExprNodeGenericFuncDesc>();
String filterExprSerialized = job.get( TableScanDesc.FILTER_EXPR_CONF_STR );
if( filterExprSerialized != null ){
filterExprs.add( SerializationUtilities.deserializeExpression(filterExprSerialized) );
}
MapWork mapWork;
try{
mapWork = Utilities.getMapWork(job);
}catch( Exception e ){
mapWork = null;
}
if( mapWork == null ){
node = createExpressionNode( filterExprs );
isVectorModeFlag = false;
return;
}
node = createExpressionNode( filterExprs );
for( Map.Entry<String,PartitionDesc> pathsAndParts: mapWork.getPathToPartitionInfo().entrySet() ){
if( ! pathNameSet.contains( pathsAndParts.getKey() ) ){
continue;
}
Properties props = pathsAndParts.getValue().getTableDesc().getProperties();
if( props.containsKey( "mds.expand" ) ){
config.set( "spread.reader.expand.column" , props.getProperty( "mds.expand" ) );
}
if( props.containsKey( "mds.flatten" ) ){
config.set( "spread.reader.flatten.column" , props.getProperty( "mds.flatten" ) );
}
}
config.set( "spread.reader.read.column.names" , createReadColumnNames( job.get( ColumnProjectionUtils.READ_COLUMN_NAMES_CONF_STR , null ) ) );
// Next Hive vesion;
// Utilities.getUseVectorizedInputFileFormat(job)
isVectorModeFlag = Utilities.isVectorMode( job );
}
示例9: getInputDirRecursive
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public static boolean getInputDirRecursive(JobConf job) {
return job.getBoolean(INPUT_DIR_RECURSIVE, false);
}
示例10: TaskImpl
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
public TaskImpl(JobId jobId, TaskType taskType, int partition,
EventHandler eventHandler, Path remoteJobConfFile, JobConf conf,
TaskAttemptListener taskAttemptListener,
Token<JobTokenIdentifier> jobToken,
Credentials credentials, Clock clock,
int appAttemptId, MRAppMetrics metrics, AppContext appContext) {
this.conf = conf;
this.clock = clock;
this.jobFile = remoteJobConfFile;
ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
readLock = readWriteLock.readLock();
writeLock = readWriteLock.writeLock();
this.attempts = Collections.emptyMap();
this.finishedAttempts = new HashSet<TaskAttemptId>(2);
this.failedAttempts = new HashSet<TaskAttemptId>(2);
this.inProgressAttempts = new HashSet<TaskAttemptId>(2);
// This overridable method call is okay in a constructor because we
// have a convention that none of the overrides depends on any
// fields that need initialization.
maxAttempts = getMaxAttempts();
taskId = MRBuilderUtils.newTaskId(jobId, partition, taskType);
this.partition = partition;
this.taskAttemptListener = taskAttemptListener;
this.eventHandler = eventHandler;
this.credentials = credentials;
this.jobToken = jobToken;
this.metrics = metrics;
this.appContext = appContext;
this.encryptedShuffle = conf.getBoolean(MRConfig.SHUFFLE_SSL_ENABLED_KEY,
MRConfig.SHUFFLE_SSL_ENABLED_DEFAULT);
// This "this leak" is okay because the retained pointer is in an
// instance variable.
stateMachine = stateMachineFactory.make(this);
// All the new TaskAttemptIDs are generated based on MR
// ApplicationAttemptID so that attempts from previous lives don't
// over-step the current one. This assumes that a task won't have more
// than 1000 attempts in its single generation, which is very reasonable.
nextAttemptNumber = (appAttemptId - 1) * 1000;
}
示例11: configure
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/** {@inheritDoc} */
public void configure(JobConf job) {
this.jobconf = job;
ignoreFailures=job.getBoolean(Option.IGNORE_FAILURES.propertyname,false);
}
示例12: getIsJavaRecordReader
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Check whether the job is using a Java RecordReader
* @param conf the configuration to check
* @return is it a Java RecordReader?
*/
public static boolean getIsJavaRecordReader(JobConf conf) {
return conf.getBoolean(Submitter.IS_JAVA_RR, false);
}
示例13: getIsJavaMapper
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Check whether the job is using a Java Mapper.
* @param conf the configuration to check
* @return is it a Java Mapper?
*/
public static boolean getIsJavaMapper(JobConf conf) {
return conf.getBoolean(Submitter.IS_JAVA_MAP, false);
}
示例14: getIsJavaReducer
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Check whether the job is using a Java Reducer.
* @param conf the configuration to check
* @return is it a Java Reducer?
*/
public static boolean getIsJavaReducer(JobConf conf) {
return conf.getBoolean(Submitter.IS_JAVA_REDUCE, false);
}
示例15: getIsJavaRecordWriter
import org.apache.hadoop.mapred.JobConf; //導入方法依賴的package包/類
/**
* Will the reduce use a Java RecordWriter?
* @param conf the configuration to check
* @return true, if the output of the job will be written by Java
*/
public static boolean getIsJavaRecordWriter(JobConf conf) {
return conf.getBoolean(Submitter.IS_JAVA_RW, false);
}