当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python Scipy stats.chi()用法及代码示例


scipy.stats.chi()是chi连续随机变量,已使用标准格式和一些形状参数定义以完成其规格。

参数:
q :上下尾概率
x :分位数
loc :[可选]位置参数。默认值= 0
scale :[可选]比例参数。默认值= 1
size :[int型元组,可选]形状或随机变量。
moments :[可选]由字母['mvsk']组成; “ m” =均值,“ v” =方差,“ s” = Fisher的偏度,“ k” = Fisher的峰度。 (默认=“ MV”)。


结果:chi连续随机变量

特别案例:

  • chi(1,loc,scale)=半正态
  • chi(2,0,scale)=瑞利
  • chi(3,0,scale):麦克斯韦

代码1:创建chi连续随机变量

# importing scipy 
from scipy.stats import chi  
  
numargs = chi.numargs 
[a] = [0.6, ] * numargs 
rv = chi(a) 
  
print ("RV : \n", rv) 

输出:

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000002948537C6D8>

代码2:chi随机变量和概率分布。

import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 
   
# Random Variates 
R = chi.rvs(a, scale = 2,  size = 10) 
print ("Random Variates : \n", R) 
  
# PDF 
R = chi.pdf(a, quantile, loc = 0, scale = 1) 
print ("\nProbability Distribution : \n", R)

输出:

Random Variates : 
 [2.40483665 1.68478304 0.01664071 2.48977805 3.66286843 1.68463842
 0.14434643 0.67812242 0.46190886 1.99973997]

Probability Distribution : 
 [0.01384193 0.14349716 0.25719966 0.35519439 0.43801475 0.50641521
 0.56131243 0.60373433 0.63477687 0.65556791]
 

代码3:图形表示。

import numpy as np 
import matplotlib.pyplot as plt 
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5)) 
print("Distribution : \n", distribution) 
  
plot = plt.plot(distribution, rv.pdf(distribution))

输出:

Distribution : 
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

代码4:改变位置参数

import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100) 
  
# Varying positional arguments 
y1 = chi.pdf(x, 1, 6) 
y2 = chi.pdf(x, 1, 4) 
plt.plot(x, y1, "*", x, y2, "r--")

输出:



相关用法


注:本文由纯净天空筛选整理自vishal3096大神的英文原创作品 scipy stats.chi() | Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。