LinearOperator 就像一个缩放的 [batch] 单位矩阵 A = c I 。
继承自:LinearOperator,Module
用法
tf.linalg.LinearOperatorScaledIdentity(
num_rows, multiplier, is_non_singular=None, is_self_adjoint=None,
is_positive_definite=None, is_square=True, assert_proper_shapes=False,
name='LinearOperatorScaledIdentity'
)参数
-
num_rows标量非负整数Tensor。相应单位矩阵中的行数。 -
multiplier形状为[B1,...,Bb]的Tensor或[](标量)。 -
is_non_singular期望这个运算符是非奇异的。 -
is_self_adjoint期望这个算子等于它的厄米转置。 -
is_positive_definite期望这个算子是正定的,意思是二次形式x^H A x对所有非零具有正实部x.请注意,我们不要求算子自伴是正定的。看:https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices -
is_square期望此运算符的行为类似于方形 [batch] 矩阵。 -
assert_proper_shapesPythonbool。如果False,仅执行初始化和方法参数是否具有正确形状的静态检查。如果True和静态检查没有定论,则将断言添加到图中。 -
name此LinearOperator的名称
抛出
-
ValueError如果num_rows被静态确定为非标量或负数。
属性
-
H返回当前的伴随LinearOperator.给定
A表示此LinearOperator,返回A*。请注意,调用self.adjoint()和self.H是等效的。 -
batch_shapeTensorShape这批尺寸的LinearOperator.如果此运算符的作用类似于带有
A.shape = [B1,...,Bb, M, N]的批处理矩阵A,则返回TensorShape([B1,...,Bb]),相当于A.shape[:-2] -
domain_dimension此运算符的域的维度(在向量空间的意义上)。如果此运算符的作用类似于带有
A.shape = [B1,...,Bb, M, N]的批处理矩阵A,则返回N。 -
dtypeTensor的DType由此LinearOperator处理。 -
graph_parents这个的图依赖列表LinearOperator. (已弃用)警告:此函数已弃用。它将在未来的版本中删除。更新说明:请勿调用
graph_parents。 -
is_non_singular -
is_positive_definite -
is_self_adjoint -
is_square返回True/False取决于此运算符是否为正方形。 -
multipliercI中的 [batch] 标量Tensor,c。 -
parameters用于实例化此LinearOperator的参数字典。 -
range_dimension此运算符范围的维度(在向量空间的意义上)。如果此运算符的作用类似于带有
A.shape = [B1,...,Bb, M, N]的批处理矩阵A,则返回M。 -
shapeTensorShape这个的LinearOperator.如果此运算符的作用类似于带有
A.shape = [B1,...,Bb, M, N]的批处理矩阵A,则返回TensorShape([B1,...,Bb, M, N]),等效于A.shape。 -
tensor_rank与此运算符对应的矩阵的秩(在张量的意义上)。如果此运算符的作用类似于带有
A.shape = [B1,...,Bb, M, N]的批处理矩阵A,则返回b + 2。
该运算符的作用类似于缩放的 [batch] 单位矩阵 A ,对于某些 b >= 0 ,其形状为 [B1,...,Bb, N, N] 。第一个 b 索引索引批处理成员。对于每个批次索引 (i1,...,ib) , A[i1,...,ib,::] 是 N x N 单位矩阵的缩放版本。
LinearOperatorIdentity 用 num_rows 和形状为 [B1,...,Bb] 的 multiplier (Tensor )初始化。 N 设置为 num_rows ,并且 multiplier 确定每个批次成员的比例。
# Create a 2 x 2 scaled identity matrix.
operator = LinearOperatorIdentity(num_rows=2, multiplier=3.)
operator.to_dense()
==> [[3., 0.]
[0., 3.]]
operator.shape
==> [2, 2]
operator.log_abs_determinant()
==> 2 * Log[3]
x = ... Shape [2, 4] Tensor
operator.matmul(x)
==> 3 * x
y = tf.random.normal(shape=[3, 2, 4])
# Note that y.shape is compatible with operator.shape because operator.shape
# is broadcast to [3, 2, 2].
x = operator.solve(y)
==> 3 * x
# Create a 2-batch of 2x2 identity matrices
operator = LinearOperatorIdentity(num_rows=2, multiplier=5.)
operator.to_dense()
==> [[[5., 0.]
[0., 5.]],
[[5., 0.]
[0., 5.]]]
x = ... Shape [2, 2, 3]
operator.matmul(x)
==> 5 * x
# Here the operator and x have different batch_shape, and are broadcast.
x = ... Shape [1, 2, 3]
operator.matmul(x)
==> 5 * x
形状兼容性
该运算符作用于具有兼容形状的 [batch] 矩阵。 x 是与 matmul 和 solve 的形状兼容的批处理矩阵,如果
operator.shape = [B1,...,Bb] + [N, N], with b >= 0
x.shape = [C1,...,Cc] + [N, R],
and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
性能
operator.matmul(x)是O(D1*...*Dd*N*R)operator.solve(x)是O(D1*...*Dd*N*R)operator.determinant()是O(D1*...*Dd)
矩阵属性提示
此 LinearOperator 使用 is_X 形式的布尔标志初始化,用于 X = non_singular, self_adjoint, positive_definite, square 。这些具有以下含义
- 如果
is_X == True,调用者应该期望操作符具有属性X。这是一个应该实现的承诺,但不是运行时断言。例如,有限的浮点精度可能会导致违反这些承诺。 - 如果
is_X == False,调用者应该期望操作符没有X。 - 如果
is_X == None(默认),调用者应该没有任何期望。
相关用法
- Python tf.linalg.LinearOperatorScaledIdentity.matvec用法及代码示例
- Python tf.linalg.LinearOperatorScaledIdentity.solvevec用法及代码示例
- Python tf.linalg.LinearOperatorScaledIdentity.matmul用法及代码示例
- Python tf.linalg.LinearOperatorScaledIdentity.diag_part用法及代码示例
- Python tf.linalg.LinearOperatorScaledIdentity.solve用法及代码示例
- Python tf.linalg.LinearOperatorScaledIdentity.assert_non_singular用法及代码示例
- Python tf.linalg.LinearOperatorFullMatrix.matvec用法及代码示例
- Python tf.linalg.LinearOperatorToeplitz.solve用法及代码示例
- Python tf.linalg.LinearOperatorIdentity.solvevec用法及代码示例
- Python tf.linalg.LinearOperatorPermutation.solve用法及代码示例
- Python tf.linalg.LinearOperatorKronecker.diag_part用法及代码示例
- Python tf.linalg.LinearOperatorToeplitz.matvec用法及代码示例
- Python tf.linalg.LinearOperatorBlockLowerTriangular.solvevec用法及代码示例
- Python tf.linalg.LinearOperatorLowerTriangular.matvec用法及代码示例
- Python tf.linalg.LinearOperatorCirculant2D.solve用法及代码示例
- Python tf.linalg.LinearOperatorCirculant3D.diag_part用法及代码示例
- Python tf.linalg.LinearOperatorToeplitz.solvevec用法及代码示例
- Python tf.linalg.LinearOperatorCirculant2D.assert_non_singular用法及代码示例
- Python tf.linalg.LinearOperatorPermutation.diag_part用法及代码示例
- Python tf.linalg.LinearOperatorToeplitz用法及代码示例
注:本文由纯净天空筛选整理自tensorflow.org大神的英文原创作品 tf.linalg.LinearOperatorScaledIdentity。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。
