用法:
pandas.json_normalize(data, record_path=None, meta=None, meta_prefix=None, record_prefix=None, errors='raise', sep='.', max_level=None)
将 semi-structured JSON 数据标准化为平面表。
- data:字典或字典列表
未序列化的 JSON 对象。
- record_path:str 或 str 列表,默认无
每个对象中到记录列表的路径。如果未通过,数据将被假定为记录数组。
- meta:路径列表(str 或 str 列表),默认无
用作结果表中每条记录的元数据的字段。
- meta_prefix:str,默认无
如果为 True,则在记录前加上点 (?) 路径,例如foo.bar.field 如果 meta 是 [‘foo’, ‘bar’]。
- record_prefix:str,默认无
如果为 True,则在记录前加上点 (?) 路径,例如foo.bar.field 如果记录的路径是 [‘foo’, ‘bar’]。
- errors:{‘raise’, ‘ignore’},默认 ‘raise’
配置错误处理。
‘ignore’:如果 meta 中列出的键并不总是存在,将忽略 KeyError。
‘raise’:如果 meta 中列出的键并不总是存在,将引发 KeyError。
- sep:str,默认“。”
嵌套记录将生成以 sep 分隔的名称。例如,对于 sep='.',{‘foo’:{‘bar’:0}} -> foo.bar。
- max_level:整数,默认无
要标准化的最大级别数(字典深度)。如果没有,则标准化所有级别。
- frame: DataFrame
- 将 semi-structured JSON 数据标准化为平面表。
参数:
返回:
例子:
>>> data = [ ... {"id":1, "name":{"first":"Coleen", "last":"Volk"}}, ... {"name":{"given":"Mark", "family":"Regner"}}, ... {"id":2, "name":"Faye Raker"}, ... ] >>> pd.json_normalize(data) id name.first name.last name.given name.family name 0 1.0 Coleen Volk NaN NaN NaN 1 NaN NaN NaN Mark Regner NaN 2 2.0 NaN NaN NaN NaN Faye Raker
>>> data = [ ... { ... "id":1, ... "name":"Cole Volk", ... "fitness":{"height":130, "weight":60}, ... }, ... {"name":"Mark Reg", "fitness":{"height":130, "weight":60}}, ... { ... "id":2, ... "name":"Faye Raker", ... "fitness":{"height":130, "weight":60}, ... }, ... ] >>> pd.json_normalize(data, max_level=0) id name fitness 0 1.0 Cole Volk {'height':130, 'weight':60} 1 NaN Mark Reg {'height':130, 'weight':60} 2 2.0 Faye Raker {'height':130, 'weight':60}
将嵌套数据规范化到级别 1。
>>> data = [ ... { ... "id":1, ... "name":"Cole Volk", ... "fitness":{"height":130, "weight":60}, ... }, ... {"name":"Mark Reg", "fitness":{"height":130, "weight":60}}, ... { ... "id":2, ... "name":"Faye Raker", ... "fitness":{"height":130, "weight":60}, ... }, ... ] >>> pd.json_normalize(data, max_level=1) id name fitness.height fitness.weight 0 1.0 Cole Volk 130 60 1 NaN Mark Reg 130 60 2 2.0 Faye Raker 130 60
>>> data = [ ... { ... "state":"Florida", ... "shortname":"FL", ... "info":{"governor":"Rick Scott"}, ... "counties":[ ... {"name":"Dade", "population":12345}, ... {"name":"Broward", "population":40000}, ... {"name":"Palm Beach", "population":60000}, ... ], ... }, ... { ... "state":"Ohio", ... "shortname":"OH", ... "info":{"governor":"John Kasich"}, ... "counties":[ ... {"name":"Summit", "population":1234}, ... {"name":"Cuyahoga", "population":1337}, ... ], ... }, ... ] >>> result = pd.json_normalize( ... data, "counties", ["state", "shortname", ["info", "governor"]] ... ) >>> result name population state shortname info.governor 0 Dade 12345 Florida FL Rick Scott 1 Broward 40000 Florida FL Rick Scott 2 Palm Beach 60000 Florida FL Rick Scott 3 Summit 1234 Ohio OH John Kasich 4 Cuyahoga 1337 Ohio OH John Kasich
>>> data = {"A":[1, 2]} >>> pd.json_normalize(data, "A", record_prefix="Prefix.") Prefix.0 0 1 1 2
返回以给定字符串为前缀的列的规范化数据。
相关用法
- Python pandas.arrays.IntervalArray.is_empty用法及代码示例
- Python pandas.DataFrame.ewm用法及代码示例
- Python pandas.api.types.is_timedelta64_ns_dtype用法及代码示例
- Python pandas.DataFrame.dot用法及代码示例
- Python pandas.DataFrame.apply用法及代码示例
- Python pandas.DataFrame.combine_first用法及代码示例
- Python pandas.read_pickle用法及代码示例
- Python pandas.Index.value_counts用法及代码示例
- Python pandas.DatetimeTZDtype用法及代码示例
- Python pandas.DataFrame.cumsum用法及代码示例
- Python pandas.Interval.is_empty用法及代码示例
- Python pandas.api.indexers.FixedForwardWindowIndexer用法及代码示例
- Python pandas.core.resample.Resampler.nearest用法及代码示例
- Python pandas.Series.add_prefix用法及代码示例
- Python pandas.Period.strftime用法及代码示例
- Python pandas.Series.map用法及代码示例
- Python pandas.Series.max用法及代码示例
- Python pandas.DataFrame.rename用法及代码示例
- Python pandas.DataFrame.to_numpy用法及代码示例
- Python pandas.Period.dayofyear用法及代码示例
注:本文由纯净天空筛选整理自pandas.pydata.org大神的英文原创作品 pandas.json_normalize。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。