借助np.legvander2d()
方法,我们可以从给定的具有度数的数组中获得Pseudo-Vandermonde矩阵,该矩阵通过使用np.legvander2d()
方法。
用法:np.legvander2d(x, y, deg)
参数:
x, y :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array
deg :[int] Degree of the resulting matrix.
返回:返回具有大小的矩阵,即array.size +(度+ 1)。
范例1:
在这个例子中,我们可以通过使用np.legvander2d()
方法,我们能够使用此方法获得pseudo-vandermonde矩阵。
# import numpy
import numpy as np
import numpy.polynomial.legendre as geek
# using np.legvander() method
ans = geek.legvander2d((1, 3, 5, 7), (2, 4, 6, 8), [2, 2])
print(ans)
输出:
[[ 1.00000000e+00 2.00000000e+00 5.50000000e+00 1.00000000e+00
2.00000000e+00 5.50000000e+00 1.00000000e+00 2.00000000e+00
5.50000000e+00]
[ 1.00000000e+00 4.00000000e+00 2.35000000e+01 3.00000000e+00
1.20000000e+01 7.05000000e+01 1.30000000e+01 5.20000000e+01
3.05500000e+02]
[ 1.00000000e+00 6.00000000e+00 5.35000000e+01 5.00000000e+00
3.00000000e+01 2.67500000e+02 3.70000000e+01 2.22000000e+02
1.97950000e+03]
[ 1.00000000e+00 8.00000000e+00 9.55000000e+01 7.00000000e+00
5.60000000e+01 6.68500000e+02 7.30000000e+01 5.84000000e+02
6.97150000e+03]]
范例2:
# import numpy
import numpy as np
import numpy.polynomial.legendre as geek
ans = geek.legvander2d((1, 2, 3, 4), (5, 6, 7, 8), [3, 3])
print(ans)
输出:
[[ 1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02]
[ 1.00000000e+00 6.00000000e+00 5.35000000e+01 5.31000000e+02
2.00000000e+00 1.20000000e+01 1.07000000e+02 1.06200000e+03
5.50000000e+00 3.30000000e+01 2.94250000e+02 2.92050000e+03
1.70000000e+01 1.02000000e+02 9.09500000e+02 9.02700000e+03]
[ 1.00000000e+00 7.00000000e+00 7.30000000e+01 8.47000000e+02
3.00000000e+00 2.10000000e+01 2.19000000e+02 2.54100000e+03
1.30000000e+01 9.10000000e+01 9.49000000e+02 1.10110000e+04
6.30000000e+01 4.41000000e+02 4.59900000e+03 5.33610000e+04]
[ 1.00000000e+00 8.00000000e+00 9.55000000e+01 1.26800000e+03
4.00000000e+00 3.20000000e+01 3.82000000e+02 5.07200000e+03
2.35000000e+01 1.88000000e+02 2.24425000e+03 2.97980000e+04
1.54000000e+02 1.23200000e+03 1.47070000e+04 1.95272000e+05]]
相关用法
- Python Numpy np.fft()用法及代码示例
- Python numpy.ma.ids()用法及代码示例
- Python Numpy np.hermeroots()用法及代码示例
- Python Numpy np.lagvander()用法及代码示例
- Python Numpy np.lagadd()用法及代码示例
- Python Numpy np.lagdiv()用法及代码示例
- Python Numpy np.lagsub()用法及代码示例
- Python Numpy np.lagmul()用法及代码示例
- Python Numpy np.hermegrid2d()用法及代码示例
- Python Numpy np.lagone()用法及代码示例
- Python Numpy np.lagzero()用法及代码示例
- Python Numpy np.lagcompanion()用法及代码示例
- Python Numpy np.lag2poly()用法及代码示例
- Python Numpy np.hermegrid3d()用法及代码示例
- Python Numpy np.hermefromroots()用法及代码示例
注:本文由纯净天空筛选整理自jana_sayantan大神的英文原创作品 Python | Numpy np.legvander2d() method。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。