当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python Numpy MaskedArray.cumsum()用法及代码示例


numpy.MaskedArray.cumsum()返回给定轴上的蒙版数组元素的累积和。在计算过程中,蒙版值在内部设置为0。但是,将保存它们的位置,并且结果将在相同位置被屏蔽。

用法: numpy.ma.cumsum(axis=None, dtype=None, out=None)

参数:
axis:[int,可选]计算累积总和的轴。默认值(无)是计算展平数组上的总和。
dtype :[dtype,可选]返回数组的类型,以及与元素相乘的累加器的类型。
out :[ndarray,可选]将结果存储到的位置。
->如果提供,则必须具有广播输入的形状。
->如果未提供或没有,则返回新分配的数组。


Return :[cumsum_along_axis,ndarray]除非指定out,否则将返回保存结果的新数组,在这种情况下,将返回对out的引用。

代码1:

# Python program explaining 
# numpy.MaskedArray.cumsum() method  
    
# importing numpy as geek   
# and numpy.ma module as ma  
import numpy as geek  
import numpy.ma as ma  
    
# creating input array   
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]]) 
print ("Input array:", in_arr)  
    
# Now we are creating a masked array.  
# by making  entry as invalid.   
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]])  
print ("Masked array:", mask_arr)  
    
# applying MaskedArray.cumsum     
# methods to masked array 
out_arr = mask_arr.cumsum()  
print ("cumulative sum of masked array along default axis:", out_arr)     
输出:
Input array: [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
Masked array: [[-- 2]
 [-- -1]
 [5 -3]]
cumulative sum of masked array along default axis: [-- 2 -- 1 6 3]

代码2:

# Python program explaining 
# numpy.MaskedArray.cumsum() method  
     
# importing numpy as geek   
# and numpy.ma module as ma  
import numpy as geek  
import numpy.ma as ma  
     
# creating input array  
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])  
print ("Input array:", in_arr) 
      
# Now we are creating a masked array.  
# by making one entry as invalid.   
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])  
print ("Masked array:", mask_arr)  
     
# applying MaskedArray.cumsum methods  
# to masked array 
out_arr1 = mask_arr.cumsum(axis = 0)  
print ("cumulative sum of masked array along 0 axis:", out_arr1) 
  
out_arr2 = mask_arr.cumsum(axis = 1)  
print ("cumulative sum of masked array along 1 axis:", out_arr2) 
       
输出:
Input array: [[1 0 3]
 [4 1 6]]
Masked array: [[1 0 3]
 [4 1 --]]
cumulative sum of masked array along 0 axis: [[1 0 3]
 [5 1 --]]
cumulative sum of masked array along 1 axis: [[1 1 4]



相关用法


注:本文由纯净天空筛选整理自jana_sayantan大神的英文原创作品 Numpy MaskedArray.cumsum() function | Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。