Matplotlib是Python中令人惊叹的可视化库,用于数组的二维图。 Matplotlib是一个基于NumPy数组的多平台数据可视化库,旨在与更广泛的SciPy堆栈配合使用。
matplotlib.ticker.IndexFormatter
这个 matplotlib.ticker.IndexFormatter
类是的子类matplotlib.ticker
类,用于格式化最接近i-th标签的位置x,其中i = int(x + 0.5)。 i len(list)的位置带有0刻度标签。
用法: class matplotlib.ticker.IndexFormatter(labels)
参数:
- labels:这是标签列表。
范例1:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
# create dummy data
x = ['str{}'.format(k) for k in range(20)]
y = np.random.rand(len(x))
# create an IndexFormatter
# with labels x
x_fmt = mpl.ticker.IndexFormatter(x)
fig,ax = plt.subplots()
ax.plot(y)
# set our IndexFormatter to be
# responsible for major ticks
ax.xaxis.set_major_formatter(x_fmt)
输出:
范例2:
from matplotlib.ticker import IndexFormatter, IndexLocator
import pandas as pd
import matplotlib.pyplot as plt
years = range(2015, 2018)
fields = range(4)
days = range(4)
bands = ['R', 'G', 'B']
index = pd.MultiIndex.from_product(
[years, fields], names =['year', 'field'])
columns = pd.MultiIndex.from_product(
[days, bands], names =['day', 'band'])
df = pd.DataFrame(0, index = index, columns = columns)
df.loc[(2015, ), (0, )] = 1
df.loc[(2016, ), (1, )] = 1
df.loc[(2017, ), (2, )] = 1
ax = plt.gca()
plt.spy(df)
xbase = len(bands)
xoffset = xbase / 2
xlabels = df.columns.get_level_values('day')
ax.xaxis.set_major_locator(IndexLocator(base = xbase,
offset = xoffset))
ax.xaxis.set_major_formatter(IndexFormatter(xlabels))
plt.xlabel('Day')
ax.xaxis.tick_bottom()
ybase = len(fields)
yoffset = ybase / 2
ylabels = df.index.get_level_values('year')
ax.yaxis.set_major_locator(IndexLocator(base = ybase,
offset = yoffset))
ax.yaxis.set_major_formatter(IndexFormatter(ylabels))
plt.ylabel('Year')
plt.show()
输出:
相关用法
- Python Matplotlib.ticker.MultipleLocator用法及代码示例
- Python Matplotlib.gridspec.GridSpec用法及代码示例
- Python Matplotlib.patches.CirclePolygon用法及代码示例
- Python Matplotlib.colors.Normalize用法及代码示例
注:本文由纯净天空筛选整理自RajuKumar19大神的英文原创作品 Matplotlib.ticker.IndexFormatter class in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。