当前位置: 首页>>代码示例>>Python>>正文


Python TPOT.export方法代码示例

本文整理汇总了Python中tpot.TPOT.export方法的典型用法代码示例。如果您正苦于以下问题:Python TPOT.export方法的具体用法?Python TPOT.export怎么用?Python TPOT.export使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tpot.TPOT的用法示例。


在下文中一共展示了TPOT.export方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_export

# 需要导入模块: from tpot import TPOT [as 别名]
# 或者: from tpot.TPOT import export [as 别名]
def test_export():
    """Assert that TPOT's export function throws a ValueError when no optimized pipeline exists"""
    tpot_obj = TPOT()

    try:
        tpot_obj.export("test_export.py")
        assert False  # Should be unreachable
    except ValueError:
        pass
开发者ID:TuanNguyen27,项目名称:tpot,代码行数:11,代码来源:tests.py

示例2: test_export

# 需要导入模块: from tpot import TPOT [as 别名]
# 或者: from tpot.TPOT import export [as 别名]
def test_export():
    """Ensure that the TPOT export function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.export('will_not_output')
        assert False  # Should be unreachable
    except ValueError:
        pass
开发者ID:ANSWER1992,项目名称:tpot,代码行数:12,代码来源:tests.py

示例3: range

# 需要导入模块: from tpot import TPOT [as 别名]
# 或者: from tpot.TPOT import export [as 别名]
Testing TPOT [Tree-based Pipeline Optimization Tool] built by Randy Olson 
(http://www.randalolson.com/2015/11/15/introducing-tpot-the-data-science-assistant/)
"""

from tpot import TPOT
import sys
import pandas as pd
from sklearn.datasets import load_digits  
from sklearn.cross_validation import train_test_split  
  

for i in range (1,len(sys.argv),2):
      if sys.argv[i] == "-df":
        DF = sys.argv[i+1]


df = np.loadtxt(DF, skiprows=1, usecols=range(1,271))

#df = pd.read_csv(DF, sep='\t',header=0, index_col=0)
print(df.info())
y = df[:,0]
x = df[:,1:]
 
X_train, X_test, y_train, y_test = train_test_split(x, y, train_size=0.75)  
  
tpot = TPOT(generations=5, verbosity=2)  
tpot.fit(X_train, y_train)  
print(tpot.score(X_train, y_train, X_test, y_test))
tpot.export('tpot_NNU_k3_pro_p05_pipeline.py')

开发者ID:bmmoore43,项目名称:motif_discovery,代码行数:31,代码来源:TPOT_test.py

示例4: load_iris

# 需要导入模块: from tpot import TPOT [as 别名]
# 或者: from tpot.TPOT import export [as 别名]
from tpot import TPOT
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
iris = load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
                                                    train_size=0.75, test_size=0.25)

tpot = TPOT(generations=5,verbosity=2)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))

tpot.export('tpot_iris_pipeline.py')
开发者ID:stylianos-kampakis,项目名称:ADAN,代码行数:15,代码来源:untitled0.py

示例5: train_test_split

# 需要导入模块: from tpot import TPOT [as 别名]
# 或者: from tpot.TPOT import export [as 别名]
train = train.drop(drop_list,axis=1)
train = train[0:3000000:300]
train.info(memory_usage='deep')



X = train.drop("hotel_cluster",axis=1).values
y = train.loc[: , "hotel_cluster"].values

del train
import gc
gc.collect()

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75,test_size=0.25)

print("got here!")

my_tpot = TPOT(generations=20,verbosity=2,population_size=5) # seems to have a problem with pop <5
# gen 1-> really means two generations!

start = time.clock()
print(start)
my_tpot.fit(X_train, y_train)
my_tpot.export('tpot_expedia_pipeline.py')
end = time.clock()
duration = end - start
score = my_tpot.score(X_test, y_test)
print(duration,score)


 
开发者ID:MariosRichards,项目名称:expedia_code,代码行数:30,代码来源:tpot_script.py


注:本文中的tpot.TPOT.export方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。