本文整理汇总了Python中timer.Timer.toc方法的典型用法代码示例。如果您正苦于以下问题:Python Timer.toc方法的具体用法?Python Timer.toc怎么用?Python Timer.toc使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类timer.Timer
的用法示例。
在下文中一共展示了Timer.toc方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_feature_scale
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def _get_feature_scale(self, num_images=100):
_t = Timer()
roidb = self.imdb.roidb
total_norm = 0.0
total_sum = 0.0
count = 0.0
num_images = min(num_images, self.imdb.num_images)
inds = np.random.choice(range(self.imdb.num_images), size=num_images, replace=False)
for i_, i in enumerate(inds):
#im = cv2.imread(self.imdb.image_path_at(i))
#if roidb[i]['flipped']:
# im = im[:, ::-1, :]
#im = self.imdb.image_path_at(i)
_t.tic()
scores, boxes, feat = self.im_detect(self.net, i, roidb[i]['boxes'], boReturnClassifierScore = False)
_t.toc()
#feat = self.net.blobs[self.layer].data
total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum()
total_sum += 1.0 * sum(sum(feat)) / len(feat)
count += feat.shape[0]
print('{}/{}: avg feature norm: {:.3f}, average value: {:.3f}'.format(i_ + 1, num_images,
total_norm / count, total_sum / count))
return self.svm_targetNorm * 1.0 / (total_norm / count)
示例2: get_pos_examples
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def get_pos_examples(self):
counts = self._get_pos_counts()
for i in range(len(counts)):
self.trainers[i].alloc_pos(counts[i])
_t = Timer()
roidb = self.imdb.roidb
num_images = len(roidb)
for i in range(num_images):
#im = cv2.imread(self.imdb.image_path_at(i))
#if roidb[i]['flipped']:
# im = im[:, ::-1, :]
#im = self.imdb.image_path_at(i)
gt_inds = np.where(roidb[i]['gt_classes'] > 0)[0]
gt_boxes = roidb[i]['boxes'][gt_inds]
_t.tic()
scores, boxes, feat = self.im_detect(self.net, i, gt_boxes, self.feature_scale, gt_inds, boReturnClassifierScore = False)
_t.toc()
#feat = self.net.blobs[self.layer].data
for j in range(1, self.imdb.num_classes):
cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0]
if len(cls_inds) > 0:
cls_feat = feat[cls_inds, :]
self.trainers[j].append_pos(cls_feat)
if i % 50 == 0:
print('get_pos_examples: {:d}/{:d} {:.3f}s' \
.format(i + 1, len(roidb), _t.average_time))
示例3: train_model
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def train_model(self, max_iters):
"""Network training loop."""
last_snapshot_iter = -1
timer = Timer()
while self.solver.iter < max_iters:
timer.tic()
self.solver.step(1)
timer.toc()
if self.solver.iter % (10 * self.solver_param.display) == 0:
print 'speed: {:.3f}s / iter'.format(timer.average_time)
if self.solver.iter % self.SNAPSHOT_ITERS == 0:
last_snapshot_iter = self.solver.iter
self.snapshot()
示例4: get_required_obj
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def get_required_obj(net, args):
'''
'''
img_file = args.img
im = cv2.imread(img_file)
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# print scores, boxes
return scores, boxes
示例5: train_model
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def train_model(self, max_iters):
"""Network training loop."""
last_snapshot_iter = -1
timer = Timer()
while self.solver.iter < max_iters:
timer.tic()
self.solver.step(1)
print 'fc9_1:',sorted(self.solver.net.params['fc9_1'][0].data[0])[-1]
#print 'fc9:',sorted(self.solver.net.params['fc9'][0].data[0])[-1]
#print 'fc7:',sorted(self.solver.net.params['fc7'][0].data[0])[-1]
#print 'fc6:',sorted(self.solver.net.params['fc6'][0].data[0])[-1]
#print 'fc9:',(self.solver.net.params['fc9'][0].data[0])[0]
#print 'fc7:',(self.solver.net.params['fc7'][0].data[0])[0]
#print 'fc6:',(self.solver.net.params['fc6'][0].data[0])[0]
#print 'conv5_3:',self.solver.net.params['conv5_3'][0].data[0][0][0]
#print 'conv5_2:',self.solver.net.params['conv5_2'][0].data[0][0][0]
#print 'conv5_1:',self.solver.net.params['conv5_1'][0].data[0][0][0]
#print 'conv4_3:',self.solver.net.params['conv4_3'][0].data[0][0][0]
#print 'fc9:',self.solver.net.params['fc9'][0].data[0][0]
timer.toc()
if self.solver.iter % (10 * self.solver_param.display) == 0:
print 'speed: {:.3f}s / iter'.format(timer.average_time)
示例6: train_with_hard_negatives
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def train_with_hard_negatives(self):
_t = Timer()
roidb = self.imdb.roidb
num_images = len(roidb)
for epoch in range(0,self.svm_nrEpochs):
# num_images = 100
for i in range(num_images):
print("*** EPOCH = %d, IMAGE = %d *** " % (epoch, i))
#im = cv2.imread(self.imdb.image_path_at(i))
#if roidb[i]['flipped']:
# im = im[:, ::-1, :]
#im = self.imdb.image_path_at(i)
_t.tic()
scores, boxes, feat = self.im_detect(self.net, i, roidb[i]['boxes'], self.feature_scale)
_t.toc()
#feat = self.net.blobs[self.layer].data
for j in range(1, self.imdb.num_classes):
hard_inds = \
np.where((scores[:, j] > self.hard_thresh) &
(roidb[i]['gt_overlaps'][:, j].toarray().ravel() <
self.neg_iou_thresh))[0]
if len(hard_inds) > 0:
hard_feat = feat[hard_inds, :].copy()
new_w_b = \
self.trainers[j].append_neg_and_retrain(feat=hard_feat)
if new_w_b is not None:
self.update_net(j, new_w_b[0], new_w_b[1])
np.savetxt(self.svmWeightsPath[:-4] + "_epoch" + str(epoch) + ".txt", self.net.params['cls_score'][0].data)
np.savetxt(self.svmBiasPath[:-4] + "_epoch" + str(epoch) + ".txt", self.net.params['cls_score'][1].data)
np.savetxt(self.svmFeatScalePath[:-4] + "_epoch" + str(epoch) + ".txt", [self.feature_scale])
print(('train_with_hard_negatives: '
'{:d}/{:d} {:.3f}s').format(i + 1, len(roidb),
_t.average_time))
示例7: train_model
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def train_model(self, max_iters, TRAIN_SNAPSHOT_ITERS=2000):
print 'test_iter: {}'.format(self.solver_param.test_iter[0])
last_snapshot_iter = -1
timer = Timer()
model_paths = []
self.solver.net.forward()
self.solver.test_nets[0].forward()
while self.solver.iter < max_iters:
timer.tic()
self.solver.step(1)
timer.toc()
if self.solver.iter % (10 * int(self.solver_param.display)) == 0:
print 'speed: {:.3f}s / iter'.format(timer.average_time)
timer.tic()
self.test_model()
timer.toc()
if self.solver.iter % TRAIN_SNAPSHOT_ITERS == 0:
last_snapshot_iter = self.solver.iter
model_paths.append(self.snapshot())
if last_snapshot_iter != self.solver.iter:
model_paths.append(self.snapshot())
return model_paths
示例8: build_tsv
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
def build_tsv():
# Set up the simulator
sim = MatterSim.Simulator()
sim.setCameraResolution(WIDTH, HEIGHT)
sim.setCameraVFOV(math.radians(VFOV))
sim.setDiscretizedViewingAngles(True)
sim.init()
# Set up Caffe resnet
caffe.set_device(GPU_ID)
caffe.set_mode_gpu()
net = caffe.Net(PROTO, MODEL, caffe.TEST)
net.blobs['data'].reshape(BATCH_SIZE, 3, HEIGHT, WIDTH)
count = 0
t_render = Timer()
t_net = Timer()
with open(OUTFILE, 'wb') as tsvfile:
writer = csv.DictWriter(tsvfile, delimiter = '\t', fieldnames = TSV_FIELDNAMES)
# Loop all the viewpoints in the simulator
viewpointIds = load_viewpointids()
for scanId,viewpointId in viewpointIds:
t_render.tic()
# Loop all discretized views from this location
blobs = []
features = np.empty([VIEWPOINT_SIZE, FEATURE_SIZE], dtype=np.float32)
for ix in range(VIEWPOINT_SIZE):
if ix == 0:
sim.newEpisode(scanId, viewpointId, 0, math.radians(-30))
elif ix % 12 == 0:
sim.makeAction(0, 1.0, 1.0)
else:
sim.makeAction(0, 1.0, 0)
state = sim.getState()
assert state.viewIndex == ix
# Transform and save generated image
blobs.append(transform_img(state.rgb))
t_render.toc()
t_net.tic()
# Run as many forward passes as necessary
assert VIEWPOINT_SIZE % BATCH_SIZE == 0
forward_passes = VIEWPOINT_SIZE / BATCH_SIZE
ix = 0
for f in range(forward_passes):
for n in range(BATCH_SIZE):
# Copy image blob to the net
net.blobs['data'].data[n, :, :, :] = blobs[ix]
ix += 1
# Forward pass
output = net.forward()
features[f*BATCH_SIZE:(f+1)*BATCH_SIZE, :] = net.blobs['pool5'].data[:,:,0,0]
writer.writerow({
'scanId': scanId,
'viewpointId': viewpointId,
'image_w': WIDTH,
'image_h': HEIGHT,
'vfov' : VFOV,
'features': base64.b64encode(features)
})
count += 1
t_net.toc()
if count % 100 == 0:
print 'Processed %d / %d viewpoints, %.1fs avg render time, %.1fs avg net time, projected %.1f hours' %\
(count,len(viewpointIds), t_render.average_time, t_net.average_time,
(t_render.average_time+t_net.average_time)*len(viewpointIds)/3600)
示例9: Fast_RCNN_C_Interface
# 需要导入模块: from timer import Timer [as 别名]
# 或者: from timer.Timer import toc [as 别名]
sys.exit()
#Create Fast_RCNN C Interface
fast_rcnn = Fast_RCNN_C_Interface()
#Get Camera Image
while True:
#Read Image
ret, img = cap.read()
#Detect Object and Show FPS
timer = Timer()
timer.tic()
# Run Fast-RCNN
hand5_max_detection = fast_rcnn.detect_object(img)
print 'HAND5 MAX DETECTION IS: {}'.format(hand5_max_detection)
timer.toc()
print 'Detection took {:.3f}s for ONE IMAGE !! '.format(timer.total_time)
#Draw the Biggest Rectangle
if not (hand5_max_detection[0] is 0 and hand5_max_detection[1] is 0
and hand5_max_detection[2] is 0 and hand5_max_detection[3] is 0):
#Draw the Rectangle
cv2.rectangle(img, (hand5_max_detection[0], hand5_max_detection[1]), (hand5_max_detection[2], hand5_max_detection[3]), (0, 255, 0), 3)
#Show Image
cv2.imshow('Detect Result', img)
cv2.waitKey(30)
#Release OpenCV reSource
if cap is not None or cap.isOpened():
cap.release()