当前位置: 首页>>代码示例>>Python>>正文


Python TextBlob.replace方法代码示例

本文整理汇总了Python中textblob.TextBlob.replace方法的典型用法代码示例。如果您正苦于以下问题:Python TextBlob.replace方法的具体用法?Python TextBlob.replace怎么用?Python TextBlob.replace使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在textblob.TextBlob的用法示例。


在下文中一共展示了TextBlob.replace方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: calcSentiment

# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import replace [as 别名]
def calcSentiment(input):
	''' calculate sentiment for each twitterfile and average this'''
	# Part of code based on master thesis of Guangxue Cao 
	tweets_data = []
	sentiment_array = []
	total = 0
	OneTweetTime = ""
	average_sentiment = 0

	# load input
	for line in input:
		tweets_data.append(line)

	# iterate over all tweets
	for tweet_data in tweets_data:
		tweet = tweet_data["text"]
		# analyze tweet with TextBlob to gain sentiment
		tweet = TextBlob(tweet)

		OneTweetTime = tweet_data["created_at"]
		
		# remove empty lines
		tweet = tweet.replace("\n", " ")
		tweet = tweet.replace("\r "," ")
		sentiment = tweet.sentiment.polarity
		sentiment_array.append(sentiment)

	for sentiment in sentiment_array:
		total += sentiment

	if len(sentiment_array) != 0:
		average_sentiment = total / len(sentiment_array)
		return [OneTweetTime, average_sentiment]
	# writer.writerow([OneTweetTime,"sentiment:", average_sentiment])













# tweet = TextBlob(tweet,analyzer=NaiveBayesAnalyzer())
开发者ID:bluef0x,项目名称:Dataproject,代码行数:50,代码来源:sentiment.py

示例2: open

# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import replace [as 别名]
#Training the classifier on the body dataset
with open("dataset2.json", 'r', encoding="utf-8-sig") as fp2:
	cl2 = NaiveBayesClassifier(fp2, format="json")

#Taking the string values
str1 = str(headline)
headline = TextBlob(str1)
body = str(body)
tb_body = TextBlob(body)
subjectivity = tb_body.sentiment.subjectivity
subjectivity = float(subjectivity) * 100
body_classify = str(cl2.classify(body))
body = body.lower()

#Finding the subjectivity
headline = headline.replace('Was', '')
headline = headline.replace('was', '')
headline = headline.replace('’','')

#Finding the tags in the sentence
array = headline.tags
array1 = []

#Finding the hot words
for ii in array:
	name, tag = ii
	name = str(name)
	name = name.lower()
	if(tag.count('NN')>0):
		name = TextBlob(name)
		array1.append(name)
开发者ID:VatsalBabel,项目名称:Fake-News-Detection,代码行数:33,代码来源:demo.py

示例3: TextBlob

# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import replace [as 别名]
auth.set_access_token(config['access_token'], config['access_token_secret'])

api = tweepy.API(auth)

# Load text file
filename=open("./txt/marx2.txt",'r')
text=filename.readlines()
text = ' '.join(text)
filename.close()

blob = TextBlob(text.decode('utf-8'))
tags = blob.tags

for blobs in blob.tags:
	if blobs[1] == 'NNP':
		wordchange = '#'+blobs[0]
		blob = blob.replace(blobs[0],wordchange)
		print "changing: " + wordchange

for sentence in blob.sentences:
	sentence = re.sub('\#+', '#', str(sentence))
	print sentence
	print "--"
	
	try:
		print "next tweet: " + str(sentence)
		api.update_status(sentence)
		time.sleep(120)#Tweet every 15 minutes
	except:
		continue
#blob.translate(to="es")  # 'La amenaza titular de The Blob...'
开发者ID:fleshgordo,项目名称:DerBotistvoll,代码行数:33,代码来源:027_textblob_readbook.py


注:本文中的textblob.TextBlob.replace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。