本文整理汇总了Python中textblob.TextBlob.correct方法的典型用法代码示例。如果您正苦于以下问题:Python TextBlob.correct方法的具体用法?Python TextBlob.correct怎么用?Python TextBlob.correct使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类textblob.TextBlob
的用法示例。
在下文中一共展示了TextBlob.correct方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tokenize
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def tokenize(text, spell=False, stem=False, lemma=False, lower=False, stop=False):
# lowercase, remove non-alphas and punctuation
b = TextBlob(unicode(text, 'utf8'))
if spell:
b = b.correct()
words = b.words
if lower:
words = words.lower()
if lemma:
words = words.lemmatize()
if stem:
words = [stemmer.stem(w) for w in words]
if stop:
tokens = [w.encode('utf-8') for w in words if w.isalpha() and w not in stopwords]
else:
tokens = [w.encode('utf-8') for w in words if w.isalpha()]
# letters_only = re.sub("[^a-zA-Z]", " ", text)
# # ngrams
# temp_list = []
# for i in range(1,ngram+1):
# temp = [list(i) for i in TextBlob(' '.join(tokens)).ngrams(i)]
# try:
# if len(temp[0]) == 1:
# temp_list.extend([i[0] for i in temp])
# else:
# for i in temp:
# temp_list.append(tuple(i))
# except:
# pass
# return temp_list
return tokens
示例2: correctSpelling
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def correctSpelling(text):
'''
Correcting the spelling of the words
:param text: the input text
:return: corrected the spelling in the words
'''
textBlob = TextBlob(text)
return textBlob.correct()
示例3: correction
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def correction():
"""Simple handler that parses a query parameter and returns a best-guess
spelling correction using the TextBlob library.
urls should take the form '/correction?text=some%20textt%20to%20corect'
data returned will be a JSON object that looks like:
{text: "some text to correct"}
"""
text = request.args.get('text', '')
text = TextBlob(text)
return jsonify(text=unicode(text.correct()))
示例4: post_process_review
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def post_process_review(review_id):
review = database.Review.get_one_by(id=review_id)
if not review:
return
original_review_body = review.body
# check for profanity
review.profanity = profanity.contains_profanity(original_review_body)
if review.profanity:
review.profanity_not_removed_body = original_review_body
review.body = profanity.censor(original_review_body)
# sentiment analysis
text_blob = TextBlob(original_review_body)
review.sentiment_polarity = text_blob.sentiment.polarity
review.sentiment_subjectivity = text_blob.sentiment.subjectivity
review.spell_checked_body = unicode(text_blob.correct())
# store
database.add(review)
database.push()
示例5: correct_spelling
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def correct_spelling(string):
nlp = TextBlob(unicode(string, 'utf-8'))
return nlp.correct()
示例6: len
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
text=pytesseract.image_to_string(Image.open('final.jpg'))
#Getting the text from the image using pytesseract
if len(text)!=0:
print(text)
token=nltk.word_tokenize(text)
l=len(token)
list_sugg=[]
for i in range(0,l):
print("...................")
t_line=TextBlob(token[i])
w_line=Word(token[i])
l=w_line.spellcheck()
length=len(l)
print("are you looking for")
for i in range(0,length):
print(str(i+1)+"->"+str(l[i][0]))
print("according to me :"+str(t_line.correct()))
list_sugg.append(str(t_line.correct()))
print("according to me......")
print(" ".join(list_sugg))
#'q' for exit
if cv2.waitKey(1) &0xFF == ord('q'):
break
except:
break
#Exiting
cam.release()
cv2.destroyAllWindows()
示例7: correct_learn
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
#def correct_learn():
#correcnt and learn here
polarity_corr["cant"] = -0.25
polarity_corr["crashes"] = -0.25
print "test\n", polarity_corr["cant"]
input=TextBlob(raw_input("Statement goes here:\n"))
print "tag start ***"
for tag in input.tags:
tag_list.append(tag[0])
print(tag[0])
print "*** tag end"
input=input.correct()
#print "corrected-> ", input, "\n"
for sentence in input.sentences:
print(sentence.sentiment)
pol=(sentence.sentiment.polarity)
sub=sentence.sentiment.subjectivity
if(sentence.sentiment.polarity<0.0):
print "negative"
for lst in tag_list:
#print lst
if((lst.lower()) in bag2):
print "\nKey area : ",lst, "\n"
#bag2.index(lst.lower())
#return 'a' in bag2
''''
示例8: clean_text
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def clean_text(self, text):
blob = TextBlob(text.lower())
return str(blob.correct())
示例9: TextBlob
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
from textblob import TextBlob
import sys
string_tocheck = TextBlob(sys.argv[1])
print string_tocheck.correct()
示例10: translate
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def translate(english_word):
english_blob = TextBlob(english_word)
english_blob = english_blob.correct()
return unicode(english_blob.translate('en', 'ar'))
示例11: input
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
Goolge = 'https://google.com'
Craigs = 'https://craigslist.org'
Cars = 'https://cars.com'
response = requests.get(Goolge)
response2 = requests.get(Craigs)
GoogleHtml = response.content
CraigsHtml = response2.content #dont really have a need for the raw html tho
BaseQuery = input("What exactly are you searching for ?")
NewBaseQuery = TextBlob(BaseQuery)#Have to make query a blob before we correct it
#BaseQuery.noun_phrases
print(NewBaseQuery.correct()) #attempts to correct any spelling errors
NewBaseQuery = NewBaseQuery.correct()
print("so you're looking for " + BaseQuery)
print(NewBaseQuery.words)
AutoGroup = ['auto', 'car', 'vehicle']
if any(word in AutoGroup for word in NewBaseQuery.words): #checks Autogroup against NewBaseQuery.words
MakeQuery = input("Do you have a preference of Make?")
#ModelQuery = input("Do you have a Model preference?")
#CashValue = input("And exactly how much are you willing to spend?")
Zip = input("And Lastly what is your zipcode?")
Ibrowser = webdriver.Chrome()
Ibrowser.get(Cars)
示例12: Word
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
# You can access the synsets for a Word via the synsets property or the get_synsets method, optionally passing in a part of speech.
word = Word("good")
print word.synsets
print Word("hack").get_synsets(pos=VERB)
print Word("octopus").definitions[1]
print Word("octopus").synsets
#word_dictinary('project')
# WordLists (A WordList is just a Python list with additional methods.)
animals = TextBlob("cat dog octopus")
print animals.words
print animals.words.pluralize()
# Spelling Correction (Use the correct() method to attempt spelling correction.)
b = TextBlob("I havv goood speling!")
print(b.correct())
w = Word('falibility')
print w.spellcheck()
# Get Word and Noun Phrase Frequencies
monty = TextBlob("We are no longer the Knights who say Ni. " "We are now the Knights who say Ekki ekki ekki PTANG.")
print monty.word_counts['ekki']
# The second way is to use the count() method.
print monty.words.count('ekki')
print monty.words.count('Ekki', case_sensitive=True)
# TextBlobs Are Like Python Strings
print zen.upper()
# You can make comparisons between TextBlobs and strings.
apple_blob = TextBlob('apples')
示例13: main
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def main() :
sent = TextBlob("my name pras tean is")
var = sent.correct()
print var
示例14: spellcheck
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
def spellcheck(message):
text = TextBlob(message)
cc = ''+text.correct()
response = {'crt' : cc}
return jsonify(response)
示例15: TextBlob
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import correct [as 别名]
blob.words
blob.noun_phrases
# sentiment analysis
blob = TextBlob('I hate this horrible movie. This movie is not very good.')
blob.sentences
blob.sentiment.polarity
[sent.sentiment.polarity for sent in blob.sentences]
# singularize and pluralize
blob = TextBlob('Put away the dishes.')
[word.singularize() for word in blob.words]
[word.pluralize() for word in blob.words]
# spelling correction
blob = TextBlob('15 minuets late')
blob.correct()
# spellcheck
Word('parot').spellcheck()
# definitions
Word('bank').define()
Word('bank').define('v')
# translation and language identification
blob = TextBlob('Welcome to the classroom.')
blob.translate(to='es')
blob = TextBlob('Hola amigos')
blob.detect_language()