本文整理汇总了Python中textblob.TextBlob.parse方法的典型用法代码示例。如果您正苦于以下问题:Python TextBlob.parse方法的具体用法?Python TextBlob.parse怎么用?Python TextBlob.parse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类textblob.TextBlob
的用法示例。
在下文中一共展示了TextBlob.parse方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getEntities
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
def getEntities(parser, tweet, xEntities):
try:
spacyParsedObject = parser(tweet)
sentence = TextBlob(tweet)
textblobTaggedObject = sentence.parse().split()
patterntaggedObject = tag(tweet, tokenize=True)
for word in patterntaggedObject:
word, wordtag=word
if wordtag == "NNP" or wordtag == "NN" or wordtag == "PRP":
v = str(word)
v = v.strip()
if(v not in xEntities):
xEntities[v]=str(wordtag)
for taggedObject in textblobTaggedObject:
for word in taggedObject:
word, wordtag=word[0], word[1]
if wordtag == "NNP" or wordtag == "NN" or wordtag == "PRP":
v = str(word)
v = v.strip()
if(v not in xEntities):
xEntities[v]=str(wordtag)
for word in spacyParsedObject:
if word.tag_ == "NNP" or word.tag_ == "NN" or word.tag_ == "PRP":
v = str(word)
v = v.strip()
if(v not in xEntities):
xEntities[v]=str(word.tag_)
return xEntities
except Exception as e:
return e
示例2: tag_documents_text
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
def tag_documents_text(client):
documents = client['cornell']['documents']
for doc in documents.find():
blob = TextBlob(doc['text'], pos_tagger=PerceptronTagger())
parsed_blob = blob.parse()
documents.update({'name':doc['name']},{'$set':{'parsed_perceptron':parsed_blob}})
示例3: extract_trigrams
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
def extract_trigrams(client):
documents = client['cornell']['documents']
for doc in documents.find():
blob = TextBlob(doc['text'])
valid_trigrams = []
for s in blob.sentences:
sentence = TextBlob(s.dict['raw'])
sentence = TextBlob(sentence.parse())
trigrams = sentence.ngrams(n=3)
valid_trigrams = valid_trigrams + get_valid_trigrams(trigrams)
documents.update({'name':doc['name']},{'$set':{'trigrams':valid_trigrams}})
示例4: TextBlob
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
# maybe need more than two headlines
# print sys.argv[1]
# print sys.argv[2]
# headlines 1 and 2 - analyze, mix and send back to node
# blob = TextBlob(sys.argv[1])
# # print blob.tags
# blob2 = TextBlob(sys.argv[2])
# print blob2.tags
for i, val in enumerate(news):
headline = news[i]['title']
headlines.append(headline)
headblob = TextBlob(headline, np_extractor=extractor)
headblobs.append(headblob.noun_phrases)
parsed = headblob.parse()
headParsed.append(parsed)
# for item in headParsed:
# print item
# get the first noun phrase from each headline and swap them
# grab a random noun phrase from each headline
h1i = int(random.random()*20)
h1 = headlines[h1i]
r1 = int(random.random()*len(headblobs[h1i]))
np1 = headblobs[h1i][r1]
# capitalize the noun phrase
# np1 = ' '.join(word[0].upper() + word[1:] for word in np1.split())
示例5: parse_second
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
except:
first_attempt = ""
if first_attempt != "":
return first_attempt
try:
second_attempt = parse_second(q, bigblob, uncommon, mode)
except:
second_attempt = ""
if second_attempt != "":
return second_attempt
third_attempt = b.backup_answer(q, n.nps, raw)
if third_attempt != "":
return third_attempt
if len(n.nps) > 0:
return n.nps[0]
else:
return "Yes" #guess
if __name__ == "__main__":
q = raw_input("Ask a question\n")
q = TextBlob(q, np_extractor=extractor)
print q.noun_phrases
noun_phrases, idxs = n.get_nps_from_blob(q)
print noun_phrases
print q.words
first = noun_phrases[0]
print n.get_np_tags(first, q)
print q.tags
print q.parse()
#print p.extract_generic_relations(q)
示例6: TextBlob
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
from nltk import Tree
from nltk.grammar import CFG
from nltk.parse.generate import generate, demo_grammar
from nltk import CFG
import string , re
import wordpolarity
s = "I do bad things for good people."
mystring = s.translate(None , string.punctuation)
#print s.parse()
b = TextBlob(mystring)
print b.sentiment.polarity
g = str(b.parse())
x = g.split()
word_list = []
mystr = mystring.split()
space_list = x
main_list = []
#print (space_list)
for word in space_list:
new_list = word.split("/")
main_list.append(new_list)
a={}
示例7: check_sarc
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
def check_sarc(tweet):
blob = TextBlob(tweet, parser=PatternParser())
tokens = blob.parse().split(' ')
dic = defaultdict(list) # stores all phrases by category
temp = ''
phrases = [] # list of all phrases
for t in tokens:
if t.split('/')[2] == 'O':
if temp:
phrases.append((ctag,temp))
dic[t.split('/')[2]].append(temp)
temp = t.split('/')[0]+' '
ctag = t.split('/')[2]
elif 'B-' in t.split('/')[2]:
if temp:
phrases.append((ctag,temp))
temp = t.split('/')[0]+' '
dic[t.split('/')[2].split('-')[1]].append(temp)
ctag = t.split('/')[2].split('-')[1]
elif 'I-' in t.split('/')[2]:
dic[t.split('/')[2].split('-')[1]][-1] += t.split('/')[0]+' '
temp += t.split('/')[0]+' '
ctag = t.split('/')[2].split('-')[1]
else:
pass
if temp:
phrases.append((ctag,temp))
SF = []
sf = []
for i in phrases:
if i[0] in ['NP','ADjP']:
SF.append(i[1])
elif i[0]=='VP':
sf.append(i[1])
for i in range(len(phrases)-1):
if phrases[i][0]=='NP' and phrases[i+1][0]=='VP':
SF.append(phrases[i][1]+' '+phrases[i+1][1])
elif phrases[i][0]=='ADVP' and phrases[i+1][0]=='VP':
sf.append(phrases[i][1]+' '+phrases[i+1][1])
elif phrases[i][0]=='VP' and phrases[i+1][0]=='ADVP':
sf.append(phrases[i][1]+' '+phrases[i+1][1])
elif phrases[i][0]=='ADJP' and phrases[i+1][0]=='VP':
sf.append(phrases[i][1]+' '+phrases[i+1][1])
elif phrases[i][0]=='VP' and phrases[i+1][0]=='NP':
sf.append(phrases[i][1]+' '+phrases[i+1][1])
for i in range(len(phrases)-2):
if phrases[i][0]=='VP' and phrases[i+1][0]=='ADVP' and phrases[i+2][0]=='ADJP':
sf.append(phrases[i][1]+' '+phrases[i+1][1]+' '+phrases[i+1][1])
elif phrases[i][0]=='VP' and phrases[i+1][0]=='ADJP' and phrases[i+2][0]=='NP':
sf.append(phrases[i][1]+' '+phrases[i+1][1]+' '+phrases[i+2][1])
elif phrases[i][0]=='ADVP' and phrases[i+1][0]=='ADJP' and phrases[i+2][0]=='NP':
sf.append(phrases[i][1]+' '+phrases[i+1][1]+' '+phrases[i+2][1])
print SF
print sf
PSF = []
NSF = []
psf = []
nsf = []
for i in SF:
blob = TextBlob(i)
if blob.polarity > 0:
PSF.append(i)
elif blob.polarity < 0:
NSF.append(i)
elif blob.polarity == 0:
pass
for i in sf:
blob = TextBlob(i)
if blob.polarity > 0:
psf.append(i)
elif blob.polarity < 0:
psf.append(i)
elif blob.polarity == 0:
pass
print PSF
print NSF
print psf
print nsf
if (PSF and nsf) or (psf and NSF):
return 1
else:
return 0
示例8: analyze
# 需要导入模块: from textblob import TextBlob [as 别名]
# 或者: from textblob.TextBlob import parse [as 别名]
def analyze(self, text):
text = TextBlob(text)
return text.parse()