本文整理汇总了Python中test_framework.messages.CTransaction.vout方法的典型用法代码示例。如果您正苦于以下问题:Python CTransaction.vout方法的具体用法?Python CTransaction.vout怎么用?Python CTransaction.vout使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类test_framework.messages.CTransaction
的用法示例。
在下文中一共展示了CTransaction.vout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_prioritised_transactions
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_prioritised_transactions(self):
# Ensure that fee deltas used via prioritisetransaction are
# correctly used by replacement logic
# 1. Check that feeperkb uses modified fees
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True)
# Higher fee, but the actual fee per KB is much lower.
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))]
tx1b_hex = txToHex(tx1b)
# Verify tx1b cannot replace tx1a.
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True)
# Use prioritisetransaction to set tx1a's fee to 0.
self.nodes[0].prioritisetransaction(txid=tx1a_txid, fee_delta=int(-0.1*COIN))
# Now tx1b should be able to replace tx1a
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True)
assert(tx1b_txid in self.nodes[0].getrawmempool())
# 2. Check that absolute fee checks use modified fee.
tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx2a = CTransaction()
tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)]
tx2a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
tx2a_hex = txToHex(tx2a)
self.nodes[0].sendrawtransaction(tx2a_hex, True)
# Lower fee, but we'll prioritise it
tx2b = CTransaction()
tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)]
tx2b.vout = [CTxOut(int(1.01 * COIN), CScript([b'a' * 35]))]
tx2b.rehash()
tx2b_hex = txToHex(tx2b)
# Verify tx2b cannot replace tx2a.
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx2b_hex, True)
# Now prioritise tx2b to have a higher modified fee
self.nodes[0].prioritisetransaction(txid=tx2b.hash, fee_delta=int(0.1*COIN))
# tx2b should now be accepted
tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True)
assert(tx2b_txid in self.nodes[0].getrawmempool())
示例2: test_too_many_replacements
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_too_many_replacements(self):
"""Replacements that evict too many transactions are rejected"""
# Try directly replacing more than MAX_REPLACEMENT_LIMIT
# transactions
# Start by creating a single transaction with many outputs
initial_nValue = 10*COIN
utxo = make_utxo(self.nodes[0], initial_nValue)
fee = int(0.0001*COIN)
split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1))
outputs = []
for i in range(MAX_REPLACEMENT_LIMIT+1):
outputs.append(CTxOut(split_value, CScript([1])))
splitting_tx = CTransaction()
splitting_tx.vin = [CTxIn(utxo, nSequence=0)]
splitting_tx.vout = outputs
splitting_tx_hex = txToHex(splitting_tx)
txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, True)
txid = int(txid, 16)
# Now spend each of those outputs individually
for i in range(MAX_REPLACEMENT_LIMIT+1):
tx_i = CTransaction()
tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)]
tx_i.vout = [CTxOut(split_value - fee, CScript([b'a' * 35]))]
tx_i_hex = txToHex(tx_i)
self.nodes[0].sendrawtransaction(tx_i_hex, True)
# Now create doublespend of the whole lot; should fail.
# Need a big enough fee to cover all spending transactions and have
# a higher fee rate
double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1)
inputs = []
for i in range(MAX_REPLACEMENT_LIMIT+1):
inputs.append(CTxIn(COutPoint(txid, i), nSequence=0))
double_tx = CTransaction()
double_tx.vin = inputs
double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))]
double_tx_hex = txToHex(double_tx)
# This will raise an exception
assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, double_tx_hex, True)
# If we remove an input, it should pass
double_tx = CTransaction()
double_tx.vin = inputs[0:-1]
double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))]
double_tx_hex = txToHex(double_tx)
self.nodes[0].sendrawtransaction(double_tx_hex, True)
示例3: test_simple_doublespend
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_simple_doublespend(self):
"""Simple doublespend"""
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
# make_utxo may have generated a bunch of blocks, so we need to sync
# before we can spend the coins generated, or else the resulting
# transactions might not be accepted by our peers.
self.sync_all()
feeout = CTxOut(int(0.1*COIN), CScript())
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35])), feeout]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True)
self.sync_all()
# Should fail because we haven't changed the fee
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(1 * COIN, CScript([b'b' * 35])), feeout]
tx1b_hex = txToHex(tx1b)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True)
# This will raise an exception due to transaction replacement being disabled
assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[1].sendrawtransaction, tx1b_hex, True)
# Extra 0.1 BTC fee
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.9 * COIN), CScript([b'b' * 35])), feeout, feeout]
tx1b_hex = txToHex(tx1b)
# Replacement still disabled even with "enough fee"
assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[1].sendrawtransaction, tx1b_hex, True)
# Works when enabled
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True)
mempool = self.nodes[0].getrawmempool()
assert (tx1a_txid not in mempool)
assert (tx1b_txid in mempool)
assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid))
# Second node is running mempoolreplacement=0, will not replace originally-seen txn
mempool = self.nodes[1].getrawmempool()
assert tx1a_txid in mempool
assert tx1b_txid not in mempool
示例4: branch
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None):
if _total_txs is None:
_total_txs = [0]
if _total_txs[0] >= max_txs:
return
txout_value = (initial_value - fee) // tree_width
if txout_value < fee:
return
vout = [CTxOut(txout_value, CScript([i+1]))
for i in range(tree_width)]
tx = CTransaction()
tx.vin = [CTxIn(prevout, nSequence=0)]
tx.vout = vout
tx_hex = txToHex(tx)
assert(len(tx.serialize()) < 100000)
txid = self.nodes[0].sendrawtransaction(tx_hex, True)
yield tx
_total_txs[0] += 1
txid = int(txid, 16)
for i, txout in enumerate(tx.vout):
for x in branch(COutPoint(txid, i), txout_value,
max_txs,
tree_width=tree_width, fee=fee,
_total_txs=_total_txs):
yield x
示例5: test_new_unconfirmed_inputs
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_new_unconfirmed_inputs(self):
"""Replacements that add new unconfirmed inputs are rejected"""
confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN))
unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False)
tx1 = CTransaction()
tx1.vin = [CTxIn(confirmed_utxo)]
tx1.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
tx1_hex = txToHex(tx1)
self.nodes[0].sendrawtransaction(tx1_hex, True)
tx2 = CTransaction()
tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)]
tx2.vout = tx1.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "replacement-adds-unconfirmed", self.nodes[0].sendrawtransaction, tx2_hex, True)
示例6: test_replacement_feeperkb
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_replacement_feeperkb(self):
"""Replacement requires fee-per-KB to be higher"""
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
tx1a_hex = txToHex(tx1a)
self.nodes[0].sendrawtransaction(tx1a_hex, True)
# Higher fee, but the fee per KB is much lower, so the replacement is
# rejected.
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))]
tx1b_hex = txToHex(tx1b)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True)
示例7: test_bip68_not_consensus
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_bip68_not_consensus(self):
assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active')
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Make an anyone-can-spend transaction
tx2 = CTransaction()
tx2.nVersion = 1
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
# sign tx2
tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(ToHex(tx2))
# Now make an invalid spend of tx2 according to BIP68
sequence_value = 100 # 100 block relative locktime
tx3 = CTransaction()
tx3.nVersion = 2
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), CScript([b'a' * 35]))]
tx3.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))
# make a block that violates bip68; ensure that the tip updates
tip = int(self.nodes[0].getbestblockhash(), 16)
block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
block.nVersion = 3
block.vtx.extend([tx1, tx2, tx3])
block.hashMerkleRoot = block.calc_merkle_root()
block.rehash()
add_witness_commitment(block)
block.solve()
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
示例8: test_doublespend_chain
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_doublespend_chain(self):
"""Doublespend of a long chain"""
initial_nValue = 50*COIN
tx0_outpoint = make_utxo(self.nodes[0], initial_nValue)
prevout = tx0_outpoint
remaining_value = initial_nValue
chain_txids = []
while remaining_value > 10*COIN:
remaining_value -= 1*COIN
tx = CTransaction()
tx.vin = [CTxIn(prevout, nSequence=0)]
feeout = CTxOut(1*COIN)
tx.vout = [CTxOut(remaining_value, CScript([1, OP_DROP] * 15 + [1])), feeout]
tx_hex = txToHex(tx)
txid = self.nodes[0].sendrawtransaction(tx_hex, True)
chain_txids.append(txid)
prevout = COutPoint(int(txid, 16), 0)
# Whether the double-spend is allowed is evaluated by including all
# child fees - 40 BTC - so this attempt is rejected.
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(initial_nValue - 30 * COIN, CScript([1] * 35)), CTxOut(30*COIN)]
dbl_tx_hex = txToHex(dbl_tx)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, True)
# Accepted with sufficient fee
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(1 * COIN, CScript([1] * 35)), CTxOut(49*COIN)]
dbl_tx_hex = txToHex(dbl_tx)
self.nodes[0].sendrawtransaction(dbl_tx_hex, True)
mempool = self.nodes[0].getrawmempool()
for doublespent_txid in chain_txids:
assert(doublespent_txid not in mempool)
示例9: test_disable_flag
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_disable_flag(self):
# Create some unconfirmed inputs
new_addr = self.nodes[0].getnewaddress()
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
utxos = self.nodes[0].listunspent(0, 0)
assert len(utxos) > 0
utxo = utxos[0]
tx1 = CTransaction()
value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)
# Check that the disable flag disables relative locktime.
# If sequence locks were used, this would require 1 block for the
# input to mature.
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
tx1.vout = [CTxOut(value, CScript([b'a']))]
tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"]
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
tx1_id = int(tx1_id, 16)
# This transaction will enable sequence-locks, so this transaction should
# fail
tx2 = CTransaction()
tx2.nVersion = 2
sequence_value = sequence_value & 0x7fffffff
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a' * 35]))]
tx2.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))
# Setting the version back down to 1 should disable the sequence lock,
# so this should be accepted.
tx2.nVersion = 1
self.nodes[0].sendrawtransaction(ToHex(tx2))
示例10: test_spends_of_conflicting_outputs
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_spends_of_conflicting_outputs(self):
"""Replacements that spend conflicting tx outputs are rejected"""
utxo1 = make_utxo(self.nodes[0], int(1.2*COIN))
utxo2 = make_utxo(self.nodes[0], 3*COIN)
tx1a = CTransaction()
tx1a.vin = [CTxIn(utxo1, nSequence=0)]
tx1a.vout = [CTxOut(int(1.1 * COIN), CScript([b'a' * 35]))]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True)
tx1a_txid = int(tx1a_txid, 16)
# Direct spend an output of the transaction we're replacing.
tx2 = CTransaction()
tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)]
tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0))
tx2.vout = tx1a.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, True)
# Spend tx1a's output to test the indirect case.
tx1b = CTransaction()
tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)]
tx1b.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
tx1b_hex = txToHex(tx1b)
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True)
tx1b_txid = int(tx1b_txid, 16)
tx2 = CTransaction()
tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0),
CTxIn(COutPoint(tx1b_txid, 0))]
tx2.vout = tx1a.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, True)
示例11: make_utxo
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
"""Create a txout with a given amount and scriptPubKey
Mines coins as needed.
confirmed - txouts created will be confirmed in the blockchain;
unconfirmed otherwise.
"""
fee = 1*COIN
while node.getbalance()['bitcoin'] < satoshi_round((amount + fee)/COIN):
node.generate(100)
new_addr = node.getnewaddress()
unblinded_addr = node.validateaddress(new_addr)["unconfidential"]
txidstr = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
tx1 = node.getrawtransaction(txidstr, 1)
txid = int(txidstr, 16)
i = None
for i, txout in enumerate(tx1['vout']):
if txout['scriptPubKey']['type'] == "fee":
continue # skip fee outputs
if txout['scriptPubKey']['addresses'] == [unblinded_addr]:
break
assert i is not None
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(txid, i))]
tx1raw = CTransaction()
tx1raw.deserialize(BytesIO(hex_str_to_bytes(node.getrawtransaction(txidstr))))
feeout = CTxOut(CTxOutValue(tx1raw.vout[i].nValue.getAmount() - amount))
tx2.vout = [CTxOut(amount, scriptPubKey), feeout]
tx2.rehash()
signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))
txid = node.sendrawtransaction(signed_tx['hex'], True)
# If requested, ensure txouts are confirmed.
if confirmed:
mempool_size = len(node.getrawmempool())
while mempool_size > 0:
node.generate(1)
new_size = len(node.getrawmempool())
# Error out if we have something stuck in the mempool, as this
# would likely be a bug.
assert(new_size < mempool_size)
mempool_size = new_size
return COutPoint(int(txid, 16), 0)
示例12: make_utxo
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
"""Create a txout with a given amount and scriptPubKey
Mines coins as needed.
confirmed - txouts created will be confirmed in the blockchain;
unconfirmed otherwise.
"""
fee = 1*COIN
while node.getbalance() < satoshi_round((amount + fee)/COIN):
node.generate(100)
new_addr = node.getnewaddress()
txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
tx1 = node.getrawtransaction(txid, 1)
txid = int(txid, 16)
i = None
for i, txout in enumerate(tx1['vout']):
if txout['scriptPubKey']['addresses'] == [new_addr]:
break
assert i is not None
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(txid, i))]
tx2.vout = [CTxOut(amount, scriptPubKey)]
tx2.rehash()
signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))
txid = node.sendrawtransaction(signed_tx['hex'], True)
# If requested, ensure txouts are confirmed.
if confirmed:
mempool_size = len(node.getrawmempool())
while mempool_size > 0:
node.generate(1)
new_size = len(node.getrawmempool())
# Error out if we have something stuck in the mempool, as this
# would likely be a bug.
assert(new_size < mempool_size)
mempool_size = new_size
return COutPoint(int(txid, 16), 0)
示例13: test_nonzero_locks
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
sequence_value = 1
if not use_height_lock:
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx = CTransaction()
tx.nVersion = 2
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
tx.rehash()
if (orig_tx.hash in node.getrawmempool()):
# sendrawtransaction should fail if the tx is in the mempool
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
else:
# sendrawtransaction should succeed if the tx is not in the mempool
node.sendrawtransaction(ToHex(tx))
return tx
示例14: run_test
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def run_test(self):
node = self.nodes[0] # convenience reference to the node
self.bootstrap_p2p() # Add one p2p connection to the node
best_block = self.nodes[0].getbestblockhash()
tip = int(best_block, 16)
best_block_time = self.nodes[0].getblock(best_block)['time']
block_time = best_block_time + 1
self.log.info("Create a new block with an anyone-can-spend coinbase.")
height = 1
block = create_block(tip, create_coinbase(height), block_time)
block.solve()
# Save the coinbase for later
block1 = block
tip = block.sha256
node.p2p.send_blocks_and_test([block], node, success=True)
self.log.info("Mature the block.")
self.nodes[0].generate(100)
# Iterate through a list of known invalid transaction types, ensuring each is
# rejected. Some are consensus invalid and some just violate policy.
for BadTxTemplate in invalid_txs.iter_all_templates():
self.log.info("Testing invalid transaction: %s", BadTxTemplate.__name__)
template = BadTxTemplate(spend_block=block1)
tx = template.get_tx()
node.p2p.send_txs_and_test(
[tx], node, success=False,
expect_disconnect=template.expect_disconnect,
reject_reason=template.reject_reason,
)
if template.expect_disconnect:
self.log.info("Reconnecting to peer")
self.reconnect_p2p()
# Make two p2p connections to provide the node with orphans
# * p2ps[0] will send valid orphan txs (one with low fee)
# * p2ps[1] will send an invalid orphan tx (and is later disconnected for that)
self.reconnect_p2p(num_connections=2)
self.log.info('Test orphan transaction handling ... ')
# Create a root transaction that we withhold until all dependent transactions
# are sent out and in the orphan cache
SCRIPT_PUB_KEY_OP_TRUE = b'\x51\x75' * 15 + b'\x51'
tx_withhold = CTransaction()
tx_withhold.vin.append(CTxIn(outpoint=COutPoint(block1.vtx[0].sha256, 0)))
tx_withhold.vout.append(CTxOut(nValue=50 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
tx_withhold.calc_sha256()
# Our first orphan tx with some outputs to create further orphan txs
tx_orphan_1 = CTransaction()
tx_orphan_1.vin.append(CTxIn(outpoint=COutPoint(tx_withhold.sha256, 0)))
tx_orphan_1.vout = [CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE)] * 3
tx_orphan_1.calc_sha256()
# A valid transaction with low fee
tx_orphan_2_no_fee = CTransaction()
tx_orphan_2_no_fee.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 0)))
tx_orphan_2_no_fee.vout.append(CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
# A valid transaction with sufficient fee
tx_orphan_2_valid = CTransaction()
tx_orphan_2_valid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 1)))
tx_orphan_2_valid.vout.append(CTxOut(nValue=10 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
tx_orphan_2_valid.calc_sha256()
# An invalid transaction with negative fee
tx_orphan_2_invalid = CTransaction()
tx_orphan_2_invalid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 2)))
tx_orphan_2_invalid.vout.append(CTxOut(nValue=11 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
self.log.info('Send the orphans ... ')
# Send valid orphan txs from p2ps[0]
node.p2p.send_txs_and_test([tx_orphan_1, tx_orphan_2_no_fee, tx_orphan_2_valid], node, success=False)
# Send invalid tx from p2ps[1]
node.p2ps[1].send_txs_and_test([tx_orphan_2_invalid], node, success=False)
assert_equal(0, node.getmempoolinfo()['size']) # Mempool should be empty
assert_equal(2, len(node.getpeerinfo())) # p2ps[1] is still connected
self.log.info('Send the withhold tx ... ')
with node.assert_debug_log(expected_msgs=["bad-txns-in-belowout"]):
node.p2p.send_txs_and_test([tx_withhold], node, success=True)
# Transactions that should end up in the mempool
expected_mempool = {
t.hash
for t in [
tx_withhold, # The transaction that is the root for all orphans
tx_orphan_1, # The orphan transaction that splits the coins
tx_orphan_2_valid, # The valid transaction (with sufficient fee)
]
}
# Transactions that do not end up in the mempool
# tx_orphan_no_fee, because it has too low fee (p2ps[0] is not disconnected for relaying that tx)
# tx_orphan_invaid, because it has negative fee (p2ps[1] is disconnected for relaying that tx)
#.........这里部分代码省略.........
示例15: test_sequence_lock_unconfirmed_inputs
# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import vout [as 别名]
def test_sequence_lock_unconfirmed_inputs(self):
# Store height so we can easily reset the chain at the end of the test
cur_height = self.nodes[0].getblockcount()
# Create a mempool tx.
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Anyone-can-spend mempool tx.
# Sequence lock of 0 should pass.
tx2 = CTransaction()
tx2.nVersion = 2
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(tx2_raw)
# Create a spend of the 0th output of orig_tx with a sequence lock
# of 1, and test what happens when submitting.
# orig_tx.vout[0] must be an anyone-can-spend output
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
sequence_value = 1
if not use_height_lock:
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx = CTransaction()
tx.nVersion = 2
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
tx.rehash()
if (orig_tx.hash in node.getrawmempool()):
# sendrawtransaction should fail if the tx is in the mempool
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
else:
# sendrawtransaction should succeed if the tx is not in the mempool
node.sendrawtransaction(ToHex(tx))
return tx
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Now mine some blocks, but make sure tx2 doesn't get mined.
# Use prioritisetransaction to lower the effective feerate to 0
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN))
cur_time = int(time.time())
for i in range(10):
self.nodes[0].setmocktime(cur_time + 600)
self.nodes[0].generate(1)
cur_time += 600
assert tx2.hash in self.nodes[0].getrawmempool()
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Mine tx2, and then try again
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN))
# Advance the time on the node so that we can test timelocks
self.nodes[0].setmocktime(cur_time+600)
self.nodes[0].generate(1)
assert tx2.hash not in self.nodes[0].getrawmempool()
# Now that tx2 is not in the mempool, a sequence locked spend should
# succeed
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
assert tx3.hash in self.nodes[0].getrawmempool()
self.nodes[0].generate(1)
assert tx3.hash not in self.nodes[0].getrawmempool()
# One more test, this time using height locks
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx4.hash in self.nodes[0].getrawmempool()
# Now try combining confirmed and unconfirmed inputs
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx5.hash not in self.nodes[0].getrawmempool()
utxos = self.nodes[0].listunspent()
tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)
# Test mempool-BIP68 consistency after reorg
#
# State of the transactions in the last blocks:
# ... -> [ tx2 ] -> [ tx3 ]
# tip-1 tip
# And currently tx4 is in the mempool.
#
# If we invalidate the tip, tx3 should get added to the mempool, causing
#.........这里部分代码省略.........