当前位置: 首页>>代码示例>>Python>>正文


Python CTransaction.rehash方法代码示例

本文整理汇总了Python中test_framework.messages.CTransaction.rehash方法的典型用法代码示例。如果您正苦于以下问题:Python CTransaction.rehash方法的具体用法?Python CTransaction.rehash怎么用?Python CTransaction.rehash使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在test_framework.messages.CTransaction的用法示例。


在下文中一共展示了CTransaction.rehash方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mine_and_test_listunspent

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
 def mine_and_test_listunspent(self, script_list, ismine):
     utxo = find_spendable_utxo(self.nodes[0], 50)
     tx = CTransaction()
     tx.vin.append(CTxIn(COutPoint(int('0x'+utxo['txid'],0), utxo['vout'])))
     for i in script_list:
         tx.vout.append(CTxOut(10000000, i))
     tx.rehash()
     signresults = self.nodes[0].signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize_without_witness()))['hex']
     txid = self.nodes[0].sendrawtransaction(signresults, True)
     self.nodes[0].generate(1)
     sync_blocks(self.nodes)
     watchcount = 0
     spendcount = 0
     for i in self.nodes[0].listunspent():
         if (i['txid'] == txid):
             watchcount += 1
             if (i['spendable'] == True):
                 spendcount += 1
     if (ismine == 2):
         assert_equal(spendcount, len(script_list))
     elif (ismine == 1):
         assert_equal(watchcount, len(script_list))
         assert_equal(spendcount, 0)
     else:
         assert_equal(watchcount, 0)
     return txid
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:28,代码来源:feature_segwit.py

示例2: test_prioritised_transactions

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def test_prioritised_transactions(self):
        # Ensure that fee deltas used via prioritisetransaction are
        # correctly used by replacement logic

        # 1. Check that feeperkb uses modified fees
        tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))

        tx1a = CTransaction()
        tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
        tx1a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
        tx1a_hex = txToHex(tx1a)
        tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True)

        # Higher fee, but the actual fee per KB is much lower.
        tx1b = CTransaction()
        tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
        tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))]
        tx1b_hex = txToHex(tx1b)

        # Verify tx1b cannot replace tx1a.
        assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True)

        # Use prioritisetransaction to set tx1a's fee to 0.
        self.nodes[0].prioritisetransaction(txid=tx1a_txid, fee_delta=int(-0.1*COIN))

        # Now tx1b should be able to replace tx1a
        tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True)

        assert(tx1b_txid in self.nodes[0].getrawmempool())

        # 2. Check that absolute fee checks use modified fee.
        tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))

        tx2a = CTransaction()
        tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)]
        tx2a.vout = [CTxOut(1 * COIN, CScript([b'a' * 35]))]
        tx2a_hex = txToHex(tx2a)
        self.nodes[0].sendrawtransaction(tx2a_hex, True)

        # Lower fee, but we'll prioritise it
        tx2b = CTransaction()
        tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)]
        tx2b.vout = [CTxOut(int(1.01 * COIN), CScript([b'a' * 35]))]
        tx2b.rehash()
        tx2b_hex = txToHex(tx2b)

        # Verify tx2b cannot replace tx2a.
        assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx2b_hex, True)

        # Now prioritise tx2b to have a higher modified fee
        self.nodes[0].prioritisetransaction(txid=tx2b.hash, fee_delta=int(0.1*COIN))

        # tx2b should now be accepted
        tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True)

        assert(tx2b_txid in self.nodes[0].getrawmempool())
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:58,代码来源:feature_rbf.py

示例3: build_block_with_transactions

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def build_block_with_transactions(self, node, utxo, num_transactions):
        block = self.build_block_on_tip(node)

        for i in range(num_transactions):
            tx = CTransaction()
            tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b''))
            tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
            tx.rehash()
            utxo = [tx.sha256, 0, tx.vout[0].nValue]
            block.vtx.append(tx)

        block.hashMerkleRoot = block.calc_merkle_root()
        block.solve()
        return block
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:16,代码来源:p2p_compactblocks.py

示例4: make_utxo

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
    """Create a txout with a given amount and scriptPubKey

    Mines coins as needed.

    confirmed - txouts created will be confirmed in the blockchain;
                unconfirmed otherwise.
    """
    fee = 1*COIN
    while node.getbalance()['bitcoin'] < satoshi_round((amount + fee)/COIN):
        node.generate(100)

    new_addr = node.getnewaddress()
    unblinded_addr = node.validateaddress(new_addr)["unconfidential"]
    txidstr = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
    tx1 = node.getrawtransaction(txidstr, 1)
    txid = int(txidstr, 16)
    i = None

    for i, txout in enumerate(tx1['vout']):
        if txout['scriptPubKey']['type'] == "fee":
            continue # skip fee outputs
        if txout['scriptPubKey']['addresses'] == [unblinded_addr]:
            break
    assert i is not None

    tx2 = CTransaction()
    tx2.vin = [CTxIn(COutPoint(txid, i))]
    tx1raw = CTransaction()
    tx1raw.deserialize(BytesIO(hex_str_to_bytes(node.getrawtransaction(txidstr))))
    feeout = CTxOut(CTxOutValue(tx1raw.vout[i].nValue.getAmount() - amount))
    tx2.vout = [CTxOut(amount, scriptPubKey), feeout]
    tx2.rehash()

    signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))

    txid = node.sendrawtransaction(signed_tx['hex'], True)

    # If requested, ensure txouts are confirmed.
    if confirmed:
        mempool_size = len(node.getrawmempool())
        while mempool_size > 0:
            node.generate(1)
            new_size = len(node.getrawmempool())
            # Error out if we have something stuck in the mempool, as this
            # would likely be a bug.
            assert(new_size < mempool_size)
            mempool_size = new_size

    return COutPoint(int(txid, 16), 0)
开发者ID:ElementsProject,项目名称:elements,代码行数:52,代码来源:feature_rbf.py

示例5: create_and_mine_tx_from_txids

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
 def create_and_mine_tx_from_txids(self, txids, success = True):
     tx = CTransaction()
     for i in txids:
         txtmp = CTransaction()
         txraw = self.nodes[0].getrawtransaction(i)
         f = BytesIO(hex_str_to_bytes(txraw))
         txtmp.deserialize(f)
         for j in range(len(txtmp.vout)):
             tx.vin.append(CTxIn(COutPoint(int('0x'+i,0), j)))
     tx.vout.append(CTxOut(0, CScript()))
     tx.rehash()
     signresults = self.nodes[0].signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize_without_witness()))['hex']
     self.nodes[0].sendrawtransaction(signresults, True)
     self.nodes[0].generate(1)
     sync_blocks(self.nodes)
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:17,代码来源:feature_segwit.py

示例6: make_utxo

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])):
    """Create a txout with a given amount and scriptPubKey

    Mines coins as needed.

    confirmed - txouts created will be confirmed in the blockchain;
                unconfirmed otherwise.
    """
    fee = 1*COIN
    while node.getbalance() < satoshi_round((amount + fee)/COIN):
        node.generate(100)

    new_addr = node.getnewaddress()
    txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
    tx1 = node.getrawtransaction(txid, 1)
    txid = int(txid, 16)
    i = None

    for i, txout in enumerate(tx1['vout']):
        if txout['scriptPubKey']['addresses'] == [new_addr]:
            break
    assert i is not None

    tx2 = CTransaction()
    tx2.vin = [CTxIn(COutPoint(txid, i))]
    tx2.vout = [CTxOut(amount, scriptPubKey)]
    tx2.rehash()

    signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))

    txid = node.sendrawtransaction(signed_tx['hex'], True)

    # If requested, ensure txouts are confirmed.
    if confirmed:
        mempool_size = len(node.getrawmempool())
        while mempool_size > 0:
            node.generate(1)
            new_size = len(node.getrawmempool())
            # Error out if we have something stuck in the mempool, as this
            # would likely be a bug.
            assert(new_size < mempool_size)
            mempool_size = new_size

    return COutPoint(int(txid, 16), 0)
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:46,代码来源:feature_rbf.py

示例7: test_nonzero_locks

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
            tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx
开发者ID:domob1812,项目名称:namecore,代码行数:21,代码来源:feature_bip68_sequence.py

示例8: test_bip68_not_consensus

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def test_bip68_not_consensus(self):
        assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active')
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)

        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Make an anyone-can-spend transaction
        tx2 = CTransaction()
        tx2.nVersion = 1
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]

        # sign tx2
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(ToHex(tx2))

        # Now make an invalid spend of tx2 according to BIP68
        sequence_value = 100 # 100 block relative locktime

        tx3 = CTransaction()
        tx3.nVersion = 2
        tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
        tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), CScript([b'a' * 35]))]
        tx3.rehash()

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))

        # make a block that violates bip68; ensure that the tip updates
        tip = int(self.nodes[0].getbestblockhash(), 16)
        block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
        block.nVersion = 3
        block.vtx.extend([tx1, tx2, tx3])
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        add_witness_commitment(block)
        block.solve()

        self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
        assert_equal(self.nodes[0].getbestblockhash(), block.hash)
开发者ID:fujicoin,项目名称:fujicoin,代码行数:45,代码来源:feature_bip68_sequence.py

示例9: make_utxos

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def make_utxos(self):
        block = self.build_block_on_tip(self.nodes[0])
        self.segwit_node.send_and_ping(msg_block(block))
        assert int(self.nodes[0].getbestblockhash(), 16) == block.sha256
        self.nodes[0].generatetoaddress(100, self.nodes[0].getnewaddress(address_type="bech32"))

        total_value = block.vtx[0].vout[0].nValue
        out_value = total_value // 10
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
        for i in range(10):
            tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
        tx.rehash()

        block2 = self.build_block_on_tip(self.nodes[0])
        block2.vtx.append(tx)
        block2.hashMerkleRoot = block2.calc_merkle_root()
        block2.solve()
        self.segwit_node.send_and_ping(msg_block(block2))
        assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
        self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
开发者ID:domob1812,项目名称:namecore,代码行数:23,代码来源:p2p_compactblocks.py

示例10: test_disable_flag

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def test_disable_flag(self):
        # Create some unconfirmed inputs
        new_addr = self.nodes[0].getnewaddress()
        self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC

        utxos = self.nodes[0].listunspent(0, 0)
        assert len(utxos) > 0

        utxo = utxos[0]

        tx1 = CTransaction()
        value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)

        # Check that the disable flag disables relative locktime.
        # If sequence locks were used, this would require 1 block for the
        # input to mature.
        sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
        tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
        tx1.vout = [CTxOut(value, CScript([b'a']))]

        tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"]
        tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
        tx1_id = int(tx1_id, 16)

        # This transaction will enable sequence-locks, so this transaction should
        # fail
        tx2 = CTransaction()
        tx2.nVersion = 2
        sequence_value = sequence_value & 0x7fffffff
        tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
        tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a' * 35]))]
        tx2.rehash()

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))

        # Setting the version back down to 1 should disable the sequence lock,
        # so this should be accepted.
        tx2.nVersion = 1

        self.nodes[0].sendrawtransaction(ToHex(tx2))
开发者ID:domob1812,项目名称:namecore,代码行数:42,代码来源:feature_bip68_sequence.py

示例11: assert_tx_format_also_signed

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def assert_tx_format_also_signed(self, utxo, segwit):
        raw = self.nodes[0].createrawtransaction(
            [{"txid": utxo["txid"], "vout": utxo["vout"]}],
            [{self.unknown_addr: "49.9"}, {"fee": "0.1"}]
        )

        unsigned_decoded = self.nodes[0].decoderawtransaction(raw)
        assert_equal(len(unsigned_decoded["vin"]), 1)
        assert('txinwitness' not in unsigned_decoded["vin"][0])

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(len(tx.vin), len(unsigned_decoded["vin"]))
        assert_equal(len(tx.vout), len(unsigned_decoded["vout"]))
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, raw)

        # Now sign and repeat tests
        signed_raw = self.nodes[0].signrawtransactionwithwallet(raw)["hex"]
        signed_decoded = self.nodes[0].decoderawtransaction(signed_raw)
        assert_equal(len(signed_decoded["vin"]), 1)
        assert(("txinwitness" in signed_decoded["vin"][0]) == segwit)

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(signed_raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(bytes_to_hex_str(tx.vin[0].scriptSig), signed_decoded["vin"][0]["scriptSig"]["hex"])
        # test witness
        if segwit:
            wit_decoded = signed_decoded["vin"][0]["txinwitness"]
            for i in range(len(wit_decoded)):
                assert_equal(bytes_to_hex_str(tx.wit.vtxinwit[0].scriptWitness.stack[i]), wit_decoded[i])
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, signed_raw)

        txid = self.nodes[0].sendrawtransaction(serialized)
        nodetx = self.nodes[0].getrawtransaction(txid, 1)
        assert_equal(nodetx["txid"], tx.rehash())
        # cross-check wtxid report from node
        wtxid = bytes_to_hex_str(ser_uint256(tx.calc_sha256(True))[::-1])
        assert_equal(nodetx["wtxid"], wtxid)
        assert_equal(nodetx["hash"], wtxid)

        # witness hash stuff
        assert_equal(nodetx["withash"], tx.calc_witness_hash())
        return (txid, wtxid)
开发者ID:ElementsProject,项目名称:elements,代码行数:53,代码来源:feature_txwitness.py

示例12: make_utxos

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def make_utxos(self):
        # Doesn't matter which node we use, just use node0.
        block = self.build_block_on_tip(self.nodes[0])
        self.test_node.send_and_ping(msg_block(block))
        assert(int(self.nodes[0].getbestblockhash(), 16) == block.sha256)
        self.nodes[0].generate(100)

        total_value = block.vtx[0].vout[0].nValue
        out_value = total_value // 10
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
        for i in range(10):
            tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
        tx.rehash()

        block2 = self.build_block_on_tip(self.nodes[0])
        block2.vtx.append(tx)
        block2.hashMerkleRoot = block2.calc_merkle_root()
        block2.solve()
        self.test_node.send_and_ping(msg_block(block2))
        assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
        self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
        return
开发者ID:Flowdalic,项目名称:bitcoin,代码行数:25,代码来源:p2p_compactblocks.py

示例13: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def run_test(self):
        node = self.nodes[0]

        self.log.info('Start with empty mempool, and 200 blocks')
        self.mempool_size = 0
        assert_equal(node.getblockcount(), 200)
        assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
        coins = node.listunspent()

        self.log.info('Should not accept garbage to testmempoolaccept')
        assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar'))
        assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
        assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar']))

        self.log.info('A transaction already in the blockchain')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': coin['txid'], 'vout': coin['vout']}],
            outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}],
        ))['hex']
        txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        self.check_mempool_result(
            result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}],
            rawtxs=[raw_tx_in_block],
        )

        self.log.info('A transaction not in the mempool')
        fee = 0.00000700
        raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}],  # RBF is used later
            outputs=[{node.getnewaddress(): 0.3 - fee}],
        ))['hex']
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': True}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A final transaction not in the mempool')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction(
            inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}],  # SEQUENCE_FINAL
            outputs=[{node.getnewaddress(): 0.025}],
            locktime=node.getblockcount() + 2000,  # Can be anything
        ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': True}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
        node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
        self.mempool_size += 1

        self.log.info('A transaction in the mempool')
        node.sendrawtransaction(hexstring=raw_tx_0)
        self.mempool_size += 1
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that replaces a mempool transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(fee * COIN)  # Double the fee
        tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1  # Now, opt out of RBF
        raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{'txid': txid_0, 'allowed': True}],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that conflicts with an unconfirmed tx')
        # Send the transaction that replaces the mempool transaction and opts out of replaceability
        node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
        # take original raw_tx_0
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(4 * fee * COIN)  # Set more fee
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with missing inputs, that never existed')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}],
            rawtxs=[tx.serialize().hex()],
        )

#.........这里部分代码省略.........
开发者ID:JeremyRubin,项目名称:bitcoin,代码行数:103,代码来源:mempool_accept.py

示例14: test_sequence_lock_unconfirmed_inputs

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import rehash [as 别名]
    def test_sequence_lock_unconfirmed_inputs(self):
        # Store height so we can easily reset the chain at the end of the test
        cur_height = self.nodes[0].getblockcount()

        # Create a mempool tx.
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Anyone-can-spend mempool tx.
        # Sequence lock of 0 should pass.
        tx2 = CTransaction()
        tx2.nVersion = 2
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(tx2_raw)

        # Create a spend of the 0th output of orig_tx with a sequence lock
        # of 1, and test what happens when submitting.
        # orig_tx.vout[0] must be an anyone-can-spend output
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
            tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx

        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)

        # Now mine some blocks, but make sure tx2 doesn't get mined.
        # Use prioritisetransaction to lower the effective feerate to 0
        self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN))
        cur_time = int(time.time())
        for i in range(10):
            self.nodes[0].setmocktime(cur_time + 600)
            self.nodes[0].generate(1)
            cur_time += 600

        assert tx2.hash in self.nodes[0].getrawmempool()

        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)

        # Mine tx2, and then try again
        self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN))

        # Advance the time on the node so that we can test timelocks
        self.nodes[0].setmocktime(cur_time+600)
        self.nodes[0].generate(1)
        assert tx2.hash not in self.nodes[0].getrawmempool()

        # Now that tx2 is not in the mempool, a sequence locked spend should
        # succeed
        tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
        assert tx3.hash in self.nodes[0].getrawmempool()

        self.nodes[0].generate(1)
        assert tx3.hash not in self.nodes[0].getrawmempool()

        # One more test, this time using height locks
        tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
        assert tx4.hash in self.nodes[0].getrawmempool()

        # Now try combining confirmed and unconfirmed inputs
        tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
        assert tx5.hash not in self.nodes[0].getrawmempool()

        utxos = self.nodes[0].listunspent()
        tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
        tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
        raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)

        # Test mempool-BIP68 consistency after reorg
        #
        # State of the transactions in the last blocks:
        # ... -> [ tx2 ] ->  [ tx3 ]
        #         tip-1        tip
        # And currently tx4 is in the mempool.
        #
        # If we invalidate the tip, tx3 should get added to the mempool, causing
#.........这里部分代码省略.........
开发者ID:domob1812,项目名称:namecore,代码行数:103,代码来源:feature_bip68_sequence.py


注:本文中的test_framework.messages.CTransaction.rehash方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。