当前位置: 首页>>代码示例>>Python>>正文


Python CTransaction.nVersion方法代码示例

本文整理汇总了Python中test_framework.messages.CTransaction.nVersion方法的典型用法代码示例。如果您正苦于以下问题:Python CTransaction.nVersion方法的具体用法?Python CTransaction.nVersion怎么用?Python CTransaction.nVersion使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在test_framework.messages.CTransaction的用法示例。


在下文中一共展示了CTransaction.nVersion方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_bip68_not_consensus

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
    def test_bip68_not_consensus(self):
        assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active')
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)

        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Make an anyone-can-spend transaction
        tx2 = CTransaction()
        tx2.nVersion = 1
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]

        # sign tx2
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(ToHex(tx2))

        # Now make an invalid spend of tx2 according to BIP68
        sequence_value = 100 # 100 block relative locktime

        tx3 = CTransaction()
        tx3.nVersion = 2
        tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
        tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), CScript([b'a' * 35]))]
        tx3.rehash()

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))

        # make a block that violates bip68; ensure that the tip updates
        tip = int(self.nodes[0].getbestblockhash(), 16)
        block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
        block.nVersion = 3
        block.vtx.extend([tx1, tx2, tx3])
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        add_witness_commitment(block)
        block.solve()

        self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
        assert_equal(self.nodes[0].getbestblockhash(), block.hash)
开发者ID:fujicoin,项目名称:fujicoin,代码行数:45,代码来源:feature_bip68_sequence.py

示例2: test_disable_flag

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
    def test_disable_flag(self):
        # Create some unconfirmed inputs
        new_addr = self.nodes[0].getnewaddress()
        self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC

        utxos = self.nodes[0].listunspent(0, 0)
        assert len(utxos) > 0

        utxo = utxos[0]

        tx1 = CTransaction()
        value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)

        # Check that the disable flag disables relative locktime.
        # If sequence locks were used, this would require 1 block for the
        # input to mature.
        sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
        tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
        tx1.vout = [CTxOut(value, CScript([b'a']))]

        tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"]
        tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
        tx1_id = int(tx1_id, 16)

        # This transaction will enable sequence-locks, so this transaction should
        # fail
        tx2 = CTransaction()
        tx2.nVersion = 2
        sequence_value = sequence_value & 0x7fffffff
        tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
        tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a' * 35]))]
        tx2.rehash()

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))

        # Setting the version back down to 1 should disable the sequence lock,
        # so this should be accepted.
        tx2.nVersion = 1

        self.nodes[0].sendrawtransaction(ToHex(tx2))
开发者ID:domob1812,项目名称:namecore,代码行数:42,代码来源:feature_bip68_sequence.py

示例3: test_nonzero_locks

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
            tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx
开发者ID:domob1812,项目名称:namecore,代码行数:21,代码来源:feature_bip68_sequence.py

示例4: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]

#.........这里部分代码省略.........
                vout = outpoint
                break

        bal = self.nodes[0].getbalance()
        inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}]
        outputs = { self.nodes[0].getnewaddress() : 2.19 }
        rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs)
        rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned1)
        assert_equal(rawTxPartialSigned1['complete'], False) #node1 only has one key, can't comp. sign the tx

        rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs)
        self.log.debug(rawTxPartialSigned2)
        assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx
        rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']])
        self.log.debug(rawTxComb)
        self.nodes[2].sendrawtransaction(rawTxComb)
        rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb)
        self.sync_all()
        self.nodes[0].generate(1)
        self.sync_all()
        assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx

        # decoderawtransaction tests
        # witness transaction
        encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
        assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction
        # non-witness transaction
        encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000"
        decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction
        assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))

        # getrawtransaction tests
        # 1. valid parameters - only supply txid
        txHash = rawTx["hash"]
        assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex'])

        # 2. valid parameters - supply txid and 0 for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex'])

        # 3. valid parameters - supply txid and False for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex'])

        # 4. valid parameters - supply txid and 1 for verbose.
        # We only check the "hex" field of the output so we don't need to update this test every time the output format changes.
        assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex'])

        # 5. valid parameters - supply txid and True for non-verbose
        assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex'])

        # 6. invalid parameters - supply txid and string "Flase"
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "Flase")

        # 7. invalid parameters - supply txid and empty array
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, [])

        # 8. invalid parameters - supply txid and empty dict
        assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {})

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 1000)

        # 9. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        # 10. invalid parameters - sequence number out of range
        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)

        inputs  = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}]
        outputs = { self.nodes[0].getnewaddress() : 1 }
        rawtx   = self.nodes[0].createrawtransaction(inputs, outputs)
        decrawtx= self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['vin'][0]['sequence'], 4294967294)

        ####################################
        # TRANSACTION VERSION NUMBER TESTS #
        ####################################

        # Test the minimum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = -0x80000000
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], -0x80000000)

        # Test the maximum transaction version number that fits in a signed 32-bit integer.
        tx = CTransaction()
        tx.nVersion = 0x7fffffff
        rawtx = ToHex(tx)
        decrawtx = self.nodes[0].decoderawtransaction(rawtx)
        assert_equal(decrawtx['version'], 0x7fffffff)
开发者ID:jimpo,项目名称:bitcoin,代码行数:104,代码来源:rpc_rawtransaction.py

示例5: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]

#.........这里部分代码省略.........
        tx.vout[0].nValue *= -1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue = 21000000 * COIN + 1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large sum of output values')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = [tx.vout[0]] * 2
        tx.vout[0].nValue = 21000000 * COIN
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with duplicate inputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * 2
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A coinbase transaction')
        # Pick the input of the first tx we signed, so it has to be a coinbase tx
        raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid'])
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('Some nonstandard transactions')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.nVersion = 3  # A version currently non-standard
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_0])  # Some non-standard script
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript([OP_HASH160])  # Some not-pushonly scriptSig
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL]))
        num_scripts = 100000 // len(output_p2sh_burn.serialize())  # Use enough outputs to make the tx too large for our policy
        tx.vout = [output_p2sh_burn] * num_scripts
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0] = output_p2sh_burn
        tx.vout[0].nValue -= 1  # Make output smaller, such that it is dust for our policy
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
        tx.vout = [tx.vout[0]] * 2
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A timelocked transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].nSequence -= 1  # Should be non-max, so locktime is not ignored
        tx.nLockTime = node.getblockcount() + 1
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction that is locked by BIP68 sequence logic')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].nSequence = 2  # We could include it in the second block mined from now, but not the very next one
        # Can skip re-signing the tx because of early rejection
        self.check_mempool_result(
            result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
开发者ID:JeremyRubin,项目名称:bitcoin,代码行数:104,代码来源:mempool_accept.py

示例6: test_sequence_lock_unconfirmed_inputs

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
    def test_sequence_lock_unconfirmed_inputs(self):
        # Store height so we can easily reset the chain at the end of the test
        cur_height = self.nodes[0].getblockcount()

        # Create a mempool tx.
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Anyone-can-spend mempool tx.
        # Sequence lock of 0 should pass.
        tx2 = CTransaction()
        tx2.nVersion = 2
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(tx2_raw)

        # Create a spend of the 0th output of orig_tx with a sequence lock
        # of 1, and test what happens when submitting.
        # orig_tx.vout[0] must be an anyone-can-spend output
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
            tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx

        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)

        # Now mine some blocks, but make sure tx2 doesn't get mined.
        # Use prioritisetransaction to lower the effective feerate to 0
        self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN))
        cur_time = int(time.time())
        for i in range(10):
            self.nodes[0].setmocktime(cur_time + 600)
            self.nodes[0].generate(1)
            cur_time += 600

        assert tx2.hash in self.nodes[0].getrawmempool()

        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
        test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)

        # Mine tx2, and then try again
        self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN))

        # Advance the time on the node so that we can test timelocks
        self.nodes[0].setmocktime(cur_time+600)
        self.nodes[0].generate(1)
        assert tx2.hash not in self.nodes[0].getrawmempool()

        # Now that tx2 is not in the mempool, a sequence locked spend should
        # succeed
        tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
        assert tx3.hash in self.nodes[0].getrawmempool()

        self.nodes[0].generate(1)
        assert tx3.hash not in self.nodes[0].getrawmempool()

        # One more test, this time using height locks
        tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
        assert tx4.hash in self.nodes[0].getrawmempool()

        # Now try combining confirmed and unconfirmed inputs
        tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
        assert tx5.hash not in self.nodes[0].getrawmempool()

        utxos = self.nodes[0].listunspent()
        tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
        tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
        raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)

        # Test mempool-BIP68 consistency after reorg
        #
        # State of the transactions in the last blocks:
        # ... -> [ tx2 ] ->  [ tx3 ]
        #         tip-1        tip
        # And currently tx4 is in the mempool.
        #
        # If we invalidate the tip, tx3 should get added to the mempool, causing
#.........这里部分代码省略.........
开发者ID:domob1812,项目名称:namecore,代码行数:103,代码来源:feature_bip68_sequence.py

示例7: test_sequence_lock_confirmed_inputs

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
    def test_sequence_lock_confirmed_inputs(self):
        # Create lots of confirmed utxos, and use them to generate lots of random
        # transactions.
        max_outputs = 50
        addresses = []
        while len(addresses) < max_outputs:
            addresses.append(self.nodes[0].getnewaddress())
        while len(self.nodes[0].listunspent()) < 200:
            import random
            random.shuffle(addresses)
            num_outputs = random.randint(1, max_outputs)
            outputs = {}
            for i in range(num_outputs):
                outputs[addresses[i]] = random.randint(1, 20)*0.01
            self.nodes[0].sendmany("", outputs)
            self.nodes[0].generate(1)

        utxos = self.nodes[0].listunspent()

        # Try creating a lot of random transactions.
        # Each time, choose a random number of inputs, and randomly set
        # some of those inputs to be sequence locked (and randomly choose
        # between height/time locking). Small random chance of making the locks
        # all pass.
        for i in range(400):
            # Randomly choose up to 10 inputs
            num_inputs = random.randint(1, 10)
            random.shuffle(utxos)

            # Track whether any sequence locks used should fail
            should_pass = True

            # Track whether this transaction was built with sequence locks
            using_sequence_locks = False

            tx = CTransaction()
            tx.nVersion = 2
            value = 0
            for j in range(num_inputs):
                sequence_value = 0xfffffffe # this disables sequence locks

                # 50% chance we enable sequence locks
                if random.randint(0,1):
                    using_sequence_locks = True

                    # 10% of the time, make the input sequence value pass
                    input_will_pass = (random.randint(1,10) == 1)
                    sequence_value = utxos[j]["confirmations"]
                    if not input_will_pass:
                        sequence_value += 1
                        should_pass = False

                    # Figure out what the median-time-past was for the confirmed input
                    # Note that if an input has N confirmations, we're going back N blocks
                    # from the tip so that we're looking up MTP of the block
                    # PRIOR to the one the input appears in, as per the BIP68 spec.
                    orig_time = self.get_median_time_past(utxos[j]["confirmations"])
                    cur_time = self.get_median_time_past(0) # MTP of the tip

                    # can only timelock this input if it's not too old -- otherwise use height
                    can_time_lock = True
                    if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
                        can_time_lock = False

                    # if time-lockable, then 50% chance we make this a time lock
                    if random.randint(0,1) and can_time_lock:
                        # Find first time-lock value that fails, or latest one that succeeds
                        time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
                        if input_will_pass and time_delta > cur_time - orig_time:
                            sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
                        elif (not input_will_pass and time_delta <= cur_time - orig_time):
                            sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
                        sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
                tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
                value += utxos[j]["amount"]*COIN
            # Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
            tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50
            tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), CScript([b'a'])))
            rawtx = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))["hex"]

            if (using_sequence_locks and not should_pass):
                # This transaction should be rejected
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx)
            else:
                # This raw transaction should be accepted
                self.nodes[0].sendrawtransaction(rawtx)
                utxos = self.nodes[0].listunspent()
开发者ID:domob1812,项目名称:namecore,代码行数:89,代码来源:feature_bip68_sequence.py

示例8: test_namescript_p2sh

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import nVersion [as 别名]
  def test_namescript_p2sh (self):
    """
    Tests how name prefixes interact with P2SH outputs and redeem scripts.
    """

    self.log.info ("Testing name prefix and P2SH interactions...")

    # This test only needs a single node and no syncing.
    node = self.nodes[0]

    name = "d/p2sh"
    value = "value"
    new = node.name_new (name)
    node.generate (12)
    self.firstupdateName (0, name, new, value)
    node.generate (1)
    baseHeight = node.getblockcount ()
    self.checkNameWithHeight (0, name, value, baseHeight)

    # Prepare some scripts and P2SH addresses we use later.  We build the
    # name script prefix for an update to our testname, so that we can build
    # P2SH redeem scripts with (or without) it.

    nameBytes = codecs.encode (name, 'ascii')
    valueBytes = codecs.encode (value, 'ascii')
    updOps = [OP_NAME_UPDATE, nameBytes, valueBytes, OP_2DROP, OP_DROP]
    anyoneOps = [OP_TRUE]

    updScript = CScript (updOps)
    anyoneScript = CScript (anyoneOps)
    updAndAnyoneScript = CScript (updOps + anyoneOps)

    anyoneAddr = self.getP2SH (0, anyoneScript)
    updAndAnyoneAddr = self.getP2SH (0, updAndAnyoneScript)

    # Send the name to the anyone-can-spend name-update script directly.
    # This is expected to update the name (verifies the update script is good).

    tx = CTransaction ()
    tx.nVersion = NAMECOIN_TX_VERSION
    data = node.name_show (name)
    tx.vin.append (CTxIn (COutPoint (int (data['txid'], 16), data['vout'])))
    tx.vout.append (CTxOut (COIN // 100, updAndAnyoneScript))
    txHex = tx.serialize ().hex ()

    txHex = node.fundrawtransaction (txHex)['hex']
    signed = node.signrawtransactionwithwallet (txHex)
    assert signed['complete']
    node.sendrawtransaction (signed['hex'])

    node.generate (1)
    self.checkNameWithHeight (0, name, value, baseHeight + 1)

    # Send the name to the anyone-can-spend P2SH address.  This should just
    # work fine and update the name.
    self.updateAnyoneCanSpendName (0, name, "value2", anyoneAddr, [])
    node.generate (1)
    self.checkNameWithHeight (0, name, "value2", baseHeight + 2)

    # Send a coin to the P2SH address with name prefix.  This should just
    # work fine but not update the name.  We should be able to spend the coin
    # again from that address.

    txid = node.sendtoaddress (updAndAnyoneAddr, 2)
    tx = node.getrawtransaction (txid)
    ind = self.rawtxOutputIndex (0, tx, updAndAnyoneAddr)
    node.generate (1)

    ins = [{"txid": txid, "vout": ind}]
    addr = node.getnewaddress ()
    out = {addr: 1}
    tx = node.createrawtransaction (ins, out)
    tx = self.setScriptSigOps (tx, 0, [updAndAnyoneScript])

    node.sendrawtransaction (tx, 0)
    node.generate (1)
    self.checkNameWithHeight (0, name, "value2", baseHeight + 2)

    found = False
    for u in node.listunspent ():
      if u['address'] == addr and u['amount'] == 1:
        found = True
        break
    if not found:
      raise AssertionError ("Coin not sent to expected address")

    # Send the name to the P2SH address with name prefix and then spend it
    # again.  Spending should work fine, and the name should just be updated
    # ordinarily; the name prefix of the redeem script should have no effect.
    self.updateAnyoneCanSpendName (0, name, "value3", updAndAnyoneAddr,
                                   [anyoneScript])
    node.generate (1)
    self.checkNameWithHeight (0, name, "value3", baseHeight + 5)
    self.updateAnyoneCanSpendName (0, name, "value4", anyoneAddr,
                                   [updAndAnyoneScript])
    node.generate (1)
    self.checkNameWithHeight (0, name, "value4", baseHeight + 6)
开发者ID:domob1812,项目名称:namecore,代码行数:99,代码来源:name_multisig.py


注:本文中的test_framework.messages.CTransaction.nVersion方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。