当前位置: 首页>>代码示例>>Python>>正文


Python CTransaction.calc_sha256方法代码示例

本文整理汇总了Python中test_framework.messages.CTransaction.calc_sha256方法的典型用法代码示例。如果您正苦于以下问题:Python CTransaction.calc_sha256方法的具体用法?Python CTransaction.calc_sha256怎么用?Python CTransaction.calc_sha256使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在test_framework.messages.CTransaction的用法示例。


在下文中一共展示了CTransaction.calc_sha256方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_tx

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
 def get_tx(self):
     tx = CTransaction()
     tx.vin.append(CTxIn(COutPoint(self.spend_tx.sha256 + 1, 0), b"", 0xffffffff))
     tx.vin.append(self.valid_txin)
     tx.vout.append(CTxOut(1, basic_p2sh))
     tx.calc_sha256()
     return tx
开发者ID:CubanCorona,项目名称:bitcoin,代码行数:9,代码来源:invalid_txs.py

示例2: _zmq_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def _zmq_test(self):
        num_blocks = 5
        self.log.info("Generate %(n)d blocks (and %(n)d coinbase txes)" % {"n": num_blocks})
        genhashes = self.nodes[0].generatetoaddress(num_blocks, ADDRESS_BCRT1_UNSPENDABLE)
        self.sync_all()

        for x in range(num_blocks):
            # Should receive the coinbase txid.
            txid = self.hashtx.receive()

            # Should receive the coinbase raw transaction.
            hex = self.rawtx.receive()
            tx = CTransaction()
            tx.deserialize(BytesIO(hex))
            tx.calc_sha256()
            assert_equal(tx.hash, txid.hex())

            # Should receive the generated block hash.
            hash = self.hashblock.receive().hex()
            assert_equal(genhashes[x], hash)
            # The block should only have the coinbase txid.
            assert_equal([txid.hex()], self.nodes[1].getblock(hash)["tx"])

            # Should receive the generated raw block.
            block = self.rawblock.receive()
            assert_equal(genhashes[x], hash256(block[:80]).hex())

        if self.is_wallet_compiled():
            self.log.info("Wait for tx from second node")
            payment_txid = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.0)
            self.sync_all()

            # Should receive the broadcasted txid.
            txid = self.hashtx.receive()
            assert_equal(payment_txid, txid.hex())

            # Should receive the broadcasted raw transaction.
            hex = self.rawtx.receive()
            assert_equal(payment_txid, hash256(hex).hex())


        self.log.info("Test the getzmqnotifications RPC")
        assert_equal(self.nodes[0].getzmqnotifications(), [
            {"type": "pubhashblock", "address": ADDRESS, "hwm": 1000},
            {"type": "pubhashtx", "address": ADDRESS, "hwm": 1000},
            {"type": "pubrawblock", "address": ADDRESS, "hwm": 1000},
            {"type": "pubrawtx", "address": ADDRESS, "hwm": 1000},
        ])

        assert_equal(self.nodes[1].getzmqnotifications(), [])
开发者ID:JeremyRubin,项目名称:bitcoin,代码行数:52,代码来源:interface_zmq.py

示例3: _zmq_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def _zmq_test(self):
        num_blocks = 5
        self.log.info("Generate %(n)d blocks (and %(n)d coinbase txes)" % {"n": num_blocks})
        genhashes = self.nodes[0].generate(num_blocks)
        self.sync_all()

        for x in range(num_blocks):
            # Should receive the coinbase txid.
            txid = self.hashtx.receive()

            # Should receive the coinbase raw transaction.
            hex = self.rawtx.receive()
            tx = CTransaction()
            tx.deserialize(BytesIO(hex))
            tx.calc_sha256()
            assert_equal(tx.hash, bytes_to_hex_str(txid))

            # Should receive the generated block hash.
            hash = bytes_to_hex_str(self.hashblock.receive())
            assert_equal(genhashes[x], hash)
            # The block should only have the coinbase txid.
            assert_equal([bytes_to_hex_str(txid)], self.nodes[1].getblock(hash)["tx"])

            # Should receive the generated raw block.
            block = self.rawblock.receive()
            # 79 bytes, last byte is saying block solution is "", ellide this for hash
            assert_equal(genhashes[x], bytes_to_hex_str(hash256(block[:78])))

        self.log.info("Wait for tx from second node")
        payment_txid = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.0)
        self.sync_all()

        # Should receive the broadcasted txid.
        txid = self.hashtx.receive()
        assert_equal(payment_txid, bytes_to_hex_str(txid))

        # Should receive the broadcasted raw transaction.
        hex = self.rawtx.receive()
        assert_equal(payment_txid, bytes_to_hex_str(hash256(hex)))
开发者ID:ElementsProject,项目名称:elements,代码行数:41,代码来源:interface_zmq.py

示例4: assert_tx_format_also_signed

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def assert_tx_format_also_signed(self, utxo, segwit):
        raw = self.nodes[0].createrawtransaction(
            [{"txid": utxo["txid"], "vout": utxo["vout"]}],
            [{self.unknown_addr: "49.9"}, {"fee": "0.1"}]
        )

        unsigned_decoded = self.nodes[0].decoderawtransaction(raw)
        assert_equal(len(unsigned_decoded["vin"]), 1)
        assert('txinwitness' not in unsigned_decoded["vin"][0])

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(len(tx.vin), len(unsigned_decoded["vin"]))
        assert_equal(len(tx.vout), len(unsigned_decoded["vout"]))
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, raw)

        # Now sign and repeat tests
        signed_raw = self.nodes[0].signrawtransactionwithwallet(raw)["hex"]
        signed_decoded = self.nodes[0].decoderawtransaction(signed_raw)
        assert_equal(len(signed_decoded["vin"]), 1)
        assert(("txinwitness" in signed_decoded["vin"][0]) == segwit)

        # Cross-check python serialization
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(signed_raw)))
        assert_equal(tx.vin[0].prevout.hash, int("0x"+utxo["txid"], 0))
        assert_equal(bytes_to_hex_str(tx.vin[0].scriptSig), signed_decoded["vin"][0]["scriptSig"]["hex"])
        # test witness
        if segwit:
            wit_decoded = signed_decoded["vin"][0]["txinwitness"]
            for i in range(len(wit_decoded)):
                assert_equal(bytes_to_hex_str(tx.wit.vtxinwit[0].scriptWitness.stack[i]), wit_decoded[i])
        # assert re-encoding
        serialized = bytes_to_hex_str(tx.serialize())
        assert_equal(serialized, signed_raw)

        txid = self.nodes[0].sendrawtransaction(serialized)
        nodetx = self.nodes[0].getrawtransaction(txid, 1)
        assert_equal(nodetx["txid"], tx.rehash())
        # cross-check wtxid report from node
        wtxid = bytes_to_hex_str(ser_uint256(tx.calc_sha256(True))[::-1])
        assert_equal(nodetx["wtxid"], wtxid)
        assert_equal(nodetx["hash"], wtxid)

        # witness hash stuff
        assert_equal(nodetx["withash"], tx.calc_witness_hash())
        return (txid, wtxid)
开发者ID:ElementsProject,项目名称:elements,代码行数:53,代码来源:feature_txwitness.py

示例5: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def run_test(self):
        node = self.nodes[0]  # convenience reference to the node

        self.bootstrap_p2p()  # Add one p2p connection to the node

        best_block = self.nodes[0].getbestblockhash()
        tip = int(best_block, 16)
        best_block_time = self.nodes[0].getblock(best_block)['time']
        block_time = best_block_time + 1

        self.log.info("Create a new block with an anyone-can-spend coinbase.")
        height = 1
        block = create_block(tip, create_coinbase(height), block_time)
        block.solve()
        # Save the coinbase for later
        block1 = block
        tip = block.sha256
        node.p2p.send_blocks_and_test([block], node, success=True)

        self.log.info("Mature the block.")
        self.nodes[0].generate(100)

        # Iterate through a list of known invalid transaction types, ensuring each is
        # rejected. Some are consensus invalid and some just violate policy.
        for BadTxTemplate in invalid_txs.iter_all_templates():
            self.log.info("Testing invalid transaction: %s", BadTxTemplate.__name__)
            template = BadTxTemplate(spend_block=block1)
            tx = template.get_tx()
            node.p2p.send_txs_and_test(
                [tx], node, success=False,
                expect_disconnect=template.expect_disconnect,
                reject_reason=template.reject_reason,
            )

            if template.expect_disconnect:
                self.log.info("Reconnecting to peer")
                self.reconnect_p2p()

        # Make two p2p connections to provide the node with orphans
        # * p2ps[0] will send valid orphan txs (one with low fee)
        # * p2ps[1] will send an invalid orphan tx (and is later disconnected for that)
        self.reconnect_p2p(num_connections=2)

        self.log.info('Test orphan transaction handling ... ')
        # Create a root transaction that we withhold until all dependent transactions
        # are sent out and in the orphan cache
        SCRIPT_PUB_KEY_OP_TRUE = b'\x51\x75' * 15 + b'\x51'
        tx_withhold = CTransaction()
        tx_withhold.vin.append(CTxIn(outpoint=COutPoint(block1.vtx[0].sha256, 0)))
        tx_withhold.vout.append(CTxOut(nValue=50 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
        tx_withhold.calc_sha256()

        # Our first orphan tx with some outputs to create further orphan txs
        tx_orphan_1 = CTransaction()
        tx_orphan_1.vin.append(CTxIn(outpoint=COutPoint(tx_withhold.sha256, 0)))
        tx_orphan_1.vout = [CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE)] * 3
        tx_orphan_1.calc_sha256()

        # A valid transaction with low fee
        tx_orphan_2_no_fee = CTransaction()
        tx_orphan_2_no_fee.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 0)))
        tx_orphan_2_no_fee.vout.append(CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))

        # A valid transaction with sufficient fee
        tx_orphan_2_valid = CTransaction()
        tx_orphan_2_valid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 1)))
        tx_orphan_2_valid.vout.append(CTxOut(nValue=10 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
        tx_orphan_2_valid.calc_sha256()

        # An invalid transaction with negative fee
        tx_orphan_2_invalid = CTransaction()
        tx_orphan_2_invalid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 2)))
        tx_orphan_2_invalid.vout.append(CTxOut(nValue=11 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))

        self.log.info('Send the orphans ... ')
        # Send valid orphan txs from p2ps[0]
        node.p2p.send_txs_and_test([tx_orphan_1, tx_orphan_2_no_fee, tx_orphan_2_valid], node, success=False)
        # Send invalid tx from p2ps[1]
        node.p2ps[1].send_txs_and_test([tx_orphan_2_invalid], node, success=False)

        assert_equal(0, node.getmempoolinfo()['size'])  # Mempool should be empty
        assert_equal(2, len(node.getpeerinfo()))  # p2ps[1] is still connected

        self.log.info('Send the withhold tx ... ')
        with node.assert_debug_log(expected_msgs=["bad-txns-in-belowout"]):
            node.p2p.send_txs_and_test([tx_withhold], node, success=True)

        # Transactions that should end up in the mempool
        expected_mempool = {
            t.hash
            for t in [
                tx_withhold,  # The transaction that is the root for all orphans
                tx_orphan_1,  # The orphan transaction that splits the coins
                tx_orphan_2_valid,  # The valid transaction (with sufficient fee)
            ]
        }
        # Transactions that do not end up in the mempool
        # tx_orphan_no_fee, because it has too low fee (p2ps[0] is not disconnected for relaying that tx)
        # tx_orphan_invaid, because it has negative fee (p2ps[1] is disconnected for relaying that tx)

#.........这里部分代码省略.........
开发者ID:chaincoin,项目名称:chaincoin,代码行数:103,代码来源:p2p_invalid_tx.py

示例6: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def run_test(self):
        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())

        # Build the blockchain
        self.tip = int(self.nodes[0].getbestblockhash(), 16)
        self.block_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] + 1

        self.blocks = []

        # Get a pubkey for the coinbase TXO
        coinbase_key = CECKey()
        coinbase_key.set_secretbytes(b"horsebattery")
        coinbase_pubkey = coinbase_key.get_pubkey()

        # Create the first block with a coinbase output to our key
        height = 1
        block = create_block(self.tip, create_coinbase(height, coinbase_pubkey), self.block_time)
        self.blocks.append(block)
        self.block_time += 1
        block.solve()
        # Save the coinbase for later
        self.block1 = block
        self.tip = block.sha256
        height += 1

        # Bury the block 100 deep so the coinbase output is spendable
        for i in range(100):
            block = create_block(self.tip, create_coinbase(height), self.block_time)
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            height += 1

        # Create a transaction spending the coinbase output with an invalid (null) signature
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(self.block1.vtx[0].sha256, 0), scriptSig=b""))
        tx.vout.append(CTxOut(49 * 100000000, CScript([OP_TRUE])))
        tx.calc_sha256()

        block102 = create_block(self.tip, create_coinbase(height), self.block_time)
        self.block_time += 1
        block102.vtx.extend([tx])
        block102.hashMerkleRoot = block102.calc_merkle_root()
        block102.rehash()
        block102.solve()
        self.blocks.append(block102)
        self.tip = block102.sha256
        self.block_time += 1
        height += 1

        # Bury the assumed valid block 2100 deep
        for i in range(2100):
            block = create_block(self.tip, create_coinbase(height), self.block_time)
            block.nVersion = 4
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            height += 1

        self.nodes[0].disconnect_p2ps()

        # Start node1 and node2 with assumevalid so they accept a block with a bad signature.
        self.start_node(1, extra_args=["-assumevalid=" + hex(block102.sha256)])
        self.start_node(2, extra_args=["-assumevalid=" + hex(block102.sha256)])

        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())
        p2p1 = self.nodes[1].add_p2p_connection(BaseNode())
        p2p2 = self.nodes[2].add_p2p_connection(BaseNode())

        # send header lists to all three nodes
        p2p0.send_header_for_blocks(self.blocks[0:2000])
        p2p0.send_header_for_blocks(self.blocks[2000:])
        p2p1.send_header_for_blocks(self.blocks[0:2000])
        p2p1.send_header_for_blocks(self.blocks[2000:])
        p2p2.send_header_for_blocks(self.blocks[0:200])

        # Send blocks to node0. Block 102 will be rejected.
        self.send_blocks_until_disconnected(p2p0)
        self.assert_blockchain_height(self.nodes[0], 101)

        # Send all blocks to node1. All blocks will be accepted.
        for i in range(2202):
            p2p1.send_message(msg_block(self.blocks[i]))
        # Syncing 2200 blocks can take a while on slow systems. Give it plenty of time to sync.
        p2p1.sync_with_ping(120)
        assert_equal(self.nodes[1].getblock(self.nodes[1].getbestblockhash())['height'], 2202)

        # Send blocks to node2. Block 102 will be rejected.
        self.send_blocks_until_disconnected(p2p2)
        self.assert_blockchain_height(self.nodes[2], 101)
开发者ID:Chovanec,项目名称:bitcoin,代码行数:94,代码来源:feature_assumevalid.py

示例7: run_test

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
    def run_test(self):
        node = self.nodes[0]  # convenience reference to the node

        self.bootstrap_p2p()  # Add one p2p connection to the node

        best_block = self.nodes[0].getbestblockhash()
        tip = int(best_block, 16)
        best_block_time = self.nodes[0].getblock(best_block)['time']
        block_time = best_block_time + 1

        self.log.info("Create a new block with an anyone-can-spend coinbase.")
        height = 1
        block = create_block(tip, create_coinbase(height), block_time)
        block.nVersion = 0x20000000
        block.solve()
        # Save the coinbase for later
        block1 = block
        tip = block.sha256
        node.p2p.send_blocks_and_test([block], node, success=True)

        self.log.info("Mature the block.")
        self.nodes[0].generate(100)

        # b'\x64' is OP_NOTIF
        # Transaction will be rejected with code 16 (REJECT_INVALID)
        # and we get disconnected immediately
        self.log.info('Test a transaction that is rejected')
        tx1 = create_tx_with_script(block1.vtx[0], 0, script_sig=b'\x64' * 35, amount=50 * COIN - 12000)
        node.p2p.send_txs_and_test([tx1], node, success=False, expect_disconnect=True)

        # Make two p2p connections to provide the node with orphans
        # * p2ps[0] will send valid orphan txs (one with low fee)
        # * p2ps[1] will send an invalid orphan tx (and is later disconnected for that)
        self.reconnect_p2p(num_connections=2)

        self.log.info('Test orphan transaction handling ... ')
        # Create a root transaction that we withhold until all dependend transactions
        # are sent out and in the orphan cache
        SCRIPT_PUB_KEY_OP_TRUE = b'\x51\x75' * 15 + b'\x51'
        tx_withhold = CTransaction()
        tx_withhold.vin.append(CTxIn(outpoint=COutPoint(block1.vtx[0].sha256, 0)))
        tx_withhold.vout.append(CTxOut(nValue=50 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
        tx_withhold.calc_sha256()

        # Our first orphan tx with some outputs to create further orphan txs
        tx_orphan_1 = CTransaction()
        tx_orphan_1.vin.append(CTxIn(outpoint=COutPoint(tx_withhold.sha256, 0)))
        tx_orphan_1.vout = [CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE)] * 3
        tx_orphan_1.calc_sha256()

        # A valid transaction with low fee
        tx_orphan_2_no_fee = CTransaction()
        tx_orphan_2_no_fee.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 0)))
        tx_orphan_2_no_fee.vout.append(CTxOut(nValue=10 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))

        # A valid transaction with sufficient fee
        tx_orphan_2_valid = CTransaction()
        tx_orphan_2_valid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 1)))
        tx_orphan_2_valid.vout.append(CTxOut(nValue=10 * COIN - 12000, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))
        tx_orphan_2_valid.calc_sha256()

        # An invalid transaction with negative fee
        tx_orphan_2_invalid = CTransaction()
        tx_orphan_2_invalid.vin.append(CTxIn(outpoint=COutPoint(tx_orphan_1.sha256, 2)))
        tx_orphan_2_invalid.vout.append(CTxOut(nValue=11 * COIN, scriptPubKey=SCRIPT_PUB_KEY_OP_TRUE))

        self.log.info('Send the orphans ... ')
        # Send valid orphan txs from p2ps[0]
        node.p2p.send_txs_and_test([tx_orphan_1, tx_orphan_2_no_fee, tx_orphan_2_valid], node, success=False)
        # Send invalid tx from p2ps[1]
        node.p2ps[1].send_txs_and_test([tx_orphan_2_invalid], node, success=False)

        assert_equal(0, node.getmempoolinfo()['size'])  # Mempool should be empty
        assert_equal(2, len(node.getpeerinfo()))  # p2ps[1] is still connected

        self.log.info('Send the withhold tx ... ')
        node.p2p.send_txs_and_test([tx_withhold], node, success=True)

        # Transactions that should end up in the mempool
        expected_mempool = {
            t.hash
            for t in [
                tx_withhold,  # The transaction that is the root for all orphans
                tx_orphan_1,  # The orphan transaction that splits the coins
                tx_orphan_2_valid,  # The valid transaction (with sufficient fee)
            ]
        }
        # Transactions that do not end up in the mempool
        # tx_orphan_no_fee, because it has too low fee (p2ps[0] is not disconnected for relaying that tx)
        # tx_orphan_invaid, because it has negative fee (p2ps[1] is disconnected for relaying that tx)

        wait_until(lambda: 1 == len(node.getpeerinfo()), timeout=12)  # p2ps[1] is no longer connected
        assert_equal(expected_mempool, set(node.getrawmempool()))

        # restart node with sending BIP61 messages disabled, check that it disconnects without sending the reject message
        self.log.info('Test a transaction that is rejected, with BIP61 disabled')
        self.restart_node(0, ['-enablebip61=0', '-persistmempool=0'])
        self.reconnect_p2p(num_connections=1)
        with node.assert_debug_log(expected_msgs=[
                "{} from peer=0 was not accepted: mandatory-script-verify-flag-failed (Invalid OP_IF construction) (code 16)".format(tx1.hash),
#.........这里部分代码省略.........
开发者ID:thrasher-,项目名称:litecoin,代码行数:103,代码来源:p2p_invalid_tx.py

示例8: get_tx

# 需要导入模块: from test_framework.messages import CTransaction [as 别名]
# 或者: from test_framework.messages.CTransaction import calc_sha256 [as 别名]
 def get_tx(self):
     tx = CTransaction()
     tx.calc_sha256()
     return tx
开发者ID:dgenr8,项目名称:bitcoin,代码行数:6,代码来源:invalid_txs.py


注:本文中的test_framework.messages.CTransaction.calc_sha256方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。