本文整理汇总了Python中sympy.physics.continuum_mechanics.beam.Beam.elastic_modulus方法的典型用法代码示例。如果您正苦于以下问题:Python Beam.elastic_modulus方法的具体用法?Python Beam.elastic_modulus怎么用?Python Beam.elastic_modulus使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.physics.continuum_mechanics.beam.Beam
的用法示例。
在下文中一共展示了Beam.elastic_modulus方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_Beam
# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import elastic_modulus [as 别名]
def test_Beam():
E = Symbol("E")
E_1 = Symbol("E_1")
I = Symbol("I")
I_1 = Symbol("I_1")
b = Beam(1, E, I)
assert b.length == 1
assert b.elastic_modulus == E
assert b.second_moment == I
assert b.variable == x
# Test the length setter
b.length = 4
assert b.length == 4
# Test the E setter
b.elastic_modulus = E_1
assert b.elastic_modulus == E_1
# Test the I setter
b.second_moment = I_1
assert b.second_moment is I_1
# Test the variable setter
b.variable = y
assert b.variable is y
# Test for all boundary conditions.
b.bc_deflection = [(0, 2)]
b.bc_slope = [(0, 1)]
assert b.boundary_conditions == {"deflection": [(0, 2)], "slope": [(0, 1)]}
# Test for slope boundary condition method
b.bc_slope.extend([(4, 3), (5, 0)])
s_bcs = b.bc_slope
assert s_bcs == [(0, 1), (4, 3), (5, 0)]
# Test for deflection boundary condition method
b.bc_deflection.extend([(4, 3), (5, 0)])
d_bcs = b.bc_deflection
assert d_bcs == [(0, 2), (4, 3), (5, 0)]
# Test for updated boundary conditions
bcs_new = b.boundary_conditions
assert bcs_new == {"deflection": [(0, 2), (4, 3), (5, 0)], "slope": [(0, 1), (4, 3), (5, 0)]}
b1 = Beam(30, E, I)
b1.apply_load(-8, 0, -1)
b1.apply_load(R1, 10, -1)
b1.apply_load(R2, 30, -1)
b1.apply_load(120, 30, -2)
b1.bc_deflection = [(10, 0), (30, 0)]
b1.solve_for_reaction_loads(R1, R2)
# Test for finding reaction forces
p = b1.reaction_loads
q = {R1: 6, R2: 2}
assert p == q
# Test for load distribution function.
p = b1.load
q = (
-8 * SingularityFunction(x, 0, -1)
+ 6 * SingularityFunction(x, 10, -1)
+ 120 * SingularityFunction(x, 30, -2)
+ 2 * SingularityFunction(x, 30, -1)
)
assert p == q
# Test for shear force distribution function
p = b1.shear_force()
q = (
-8 * SingularityFunction(x, 0, 0)
+ 6 * SingularityFunction(x, 10, 0)
+ 120 * SingularityFunction(x, 30, -1)
+ 2 * SingularityFunction(x, 30, 0)
)
assert p == q
# Test for bending moment distribution function
p = b1.bending_moment()
q = (
-8 * SingularityFunction(x, 0, 1)
+ 6 * SingularityFunction(x, 10, 1)
+ 120 * SingularityFunction(x, 30, 0)
+ 2 * SingularityFunction(x, 30, 1)
)
assert p == q
# Test for slope distribution function
p = b1.slope()
q = (
-4 * SingularityFunction(x, 0, 2)
+ 3 * SingularityFunction(x, 10, 2)
+ 120 * SingularityFunction(x, 30, 1)
+ SingularityFunction(x, 30, 2)
+ 4000 / 3
)
assert p == q / (E * I)
#.........这里部分代码省略.........
示例2: test_Beam
# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import elastic_modulus [as 别名]
def test_Beam():
E = Symbol('E')
E_1 = Symbol('E_1')
I = Symbol('I')
I_1 = Symbol('I_1')
b = Beam(1, E, I)
assert b.length == 1
assert b.elastic_modulus == E
assert b.second_moment == I
assert b.variable == x
# Test the length setter
b.length = 4
assert b.length == 4
# Test the E setter
b.elastic_modulus = E_1
assert b.elastic_modulus == E_1
# Test the I setter
b.second_moment = I_1
assert b.second_moment is I_1
# Test the variable setter
b.variable = y
assert b.variable is y
# Test for all boundary conditions.
b.bc_deflection = [(0, 2)]
b.bc_slope = [(0, 1)]
assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}
# Test for slope boundary condition method
b.bc_slope.extend([(4, 3), (5, 0)])
s_bcs = b.bc_slope
assert s_bcs == [(0, 1), (4, 3), (5, 0)]
# Test for deflection boundary condition method
b.bc_deflection.extend([(4, 3), (5, 0)])
d_bcs = b.bc_deflection
assert d_bcs == [(0, 2), (4, 3), (5, 0)]
# Test for updated boundary conditions
bcs_new = b.boundary_conditions
assert bcs_new == {
'deflection': [(0, 2), (4, 3), (5, 0)],
'slope': [(0, 1), (4, 3), (5, 0)]}
b1 = Beam(30, E, I)
b1.apply_load(-8, 0, -1)
b1.apply_load(R1, 10, -1)
b1.apply_load(R2, 30, -1)
b1.apply_load(120, 30, -2)
b1.bc_deflection = [(10, 0), (30, 0)]
b1.solve_for_reaction_loads(R1, R2)
# Test for finding reaction forces
p = b1.reaction_loads
q = {R1: 6, R2: 2}
assert p == q
# Test for load distribution function.
p = b1.load
q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
assert p == q
# Test for shear force distribution function
p = b1.shear_force()
q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
assert p == q
# Test for bending moment distribution function
p = b1.bending_moment()
q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
assert p == q
# Test for slope distribution function
p = b1.slope()
q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3
assert p == q/(E*I)
# Test for deflection distribution function
p = b1.deflection()
q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000
assert p == q/(E*I)
# Test using symbols
l = Symbol('l')
w0 = Symbol('w0')
w2 = Symbol('w2')
a1 = Symbol('a1')
c = Symbol('c')
c1 = Symbol('c1')
d = Symbol('d')
e = Symbol('e')
f = Symbol('f')
b2 = Beam(l, E, I)
b2.apply_load(w0, a1, 1)
#.........这里部分代码省略.........