当前位置: 首页>>代码示例>>Python>>正文


Python Beam.deflection方法代码示例

本文整理汇总了Python中sympy.physics.continuum_mechanics.beam.Beam.deflection方法的典型用法代码示例。如果您正苦于以下问题:Python Beam.deflection方法的具体用法?Python Beam.deflection怎么用?Python Beam.deflection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.physics.continuum_mechanics.beam.Beam的用法示例。


在下文中一共展示了Beam.deflection方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_apply_support

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
    assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:27,代码来源:test_beam.py

示例2: test_apply_support

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3)/(E*I)
    assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)

    P = Symbol('P', positive=True)
    L = Symbol('L', positive=True)
    b = Beam(L, E, I)
    b.apply_support(0, type='fixed')
    b.apply_support(L, type='fixed')
    b.apply_load(-P, L/2, -1)
    R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
    b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
    assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
开发者ID:cklb,项目名称:sympy,代码行数:37,代码来源:test_beam.py

示例3: test_insufficient_bconditions

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_insufficient_bconditions():
    # Test cases when required number of boundary conditions
    # are not provided to solve the integration constants.
    L = symbols('L', positive=True)
    E, I, P, a3, a4 = symbols('E I P a3 a4')

    b = Beam(L, E, I, base_char='a')
    b.apply_load(R2, L, -1)
    b.apply_load(R1, 0, -1)
    b.apply_load(-P, L/2, -1)
    b.solve_for_reaction_loads(R1, R2)

    p = b.slope()
    q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
    assert p == q/(E*I) + a3

    p = b.deflection()
    q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I) + a3*x + a4

    b.bc_deflection = [(0, 0)]
    p = b.deflection()
    q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)

    b.bc_deflection = [(0, 0), (L, 0)]
    p = b.deflection()
    q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)
开发者ID:cklb,项目名称:sympy,代码行数:31,代码来源:test_beam.py

示例4: test_variable_moment

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_variable_moment():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, 2*(4 - x))
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
        - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
    assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
        - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
        + 40*SingularityFunction(x, 4, 1))/E).expand()

    b = Beam(4, E - x, I)
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
        + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
        + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
        + x - 4)*SingularityFunction(x, 4, 0))/I).expand()
开发者ID:cklb,项目名称:sympy,代码行数:32,代码来源:test_beam.py

示例5: test_beam_units

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_beam_units():
    E = Symbol('E')
    I = Symbol('I')
    R1, R2 = symbols('R1, R2')

    b = Beam(8*meter, 200*giga*newton/meter**2, 400*1000000*(milli*meter)**4)
    b.apply_load(5*kilo*newton, 2*meter, -1)
    b.apply_load(R1, 0*meter, -1)
    b.apply_load(R2, 8*meter, -1)
    b.apply_load(10*kilo*newton/meter, 4*meter, 0, end=8*meter)
    b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)]
    b.solve_for_reaction_loads(R1, R2)
    assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton}

    b = Beam(3*meter, E*newton/meter**2, I*meter**4)
    b.apply_load(8*kilo*newton, 1*meter, -1)
    b.apply_load(R1, 0*meter, -1)
    b.apply_load(R2, 3*meter, -1)
    b.apply_load(12*kilo*newton*meter, 2*meter, -2)
    b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)]
    b.solve_for_reaction_loads(R1, R2)
    assert b.reaction_loads == {R1: -28000*newton/3, R2: 4000*newton/3}
    assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I)
开发者ID:cklb,项目名称:sympy,代码行数:25,代码来源:test_beam.py

示例6: test_Beam

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_Beam():
    E = Symbol("E")
    E_1 = Symbol("E_1")
    I = Symbol("I")
    I_1 = Symbol("I_1")
    b = Beam(1, E, I)
    assert b.length == 1
    assert b.elastic_modulus == E
    assert b.second_moment == I
    assert b.variable == x

    # Test the length setter
    b.length = 4
    assert b.length == 4

    # Test the E setter
    b.elastic_modulus = E_1
    assert b.elastic_modulus == E_1

    # Test the I setter
    b.second_moment = I_1
    assert b.second_moment is I_1

    # Test the variable setter
    b.variable = y
    assert b.variable is y

    # Test for all boundary conditions.
    b.bc_deflection = [(0, 2)]
    b.bc_slope = [(0, 1)]
    assert b.boundary_conditions == {"deflection": [(0, 2)], "slope": [(0, 1)]}

    # Test for slope boundary condition method
    b.bc_slope.extend([(4, 3), (5, 0)])
    s_bcs = b.bc_slope
    assert s_bcs == [(0, 1), (4, 3), (5, 0)]

    # Test for deflection boundary condition method
    b.bc_deflection.extend([(4, 3), (5, 0)])
    d_bcs = b.bc_deflection
    assert d_bcs == [(0, 2), (4, 3), (5, 0)]

    # Test for updated boundary conditions
    bcs_new = b.boundary_conditions
    assert bcs_new == {"deflection": [(0, 2), (4, 3), (5, 0)], "slope": [(0, 1), (4, 3), (5, 0)]}

    b1 = Beam(30, E, I)
    b1.apply_load(-8, 0, -1)
    b1.apply_load(R1, 10, -1)
    b1.apply_load(R2, 30, -1)
    b1.apply_load(120, 30, -2)
    b1.bc_deflection = [(10, 0), (30, 0)]
    b1.solve_for_reaction_loads(R1, R2)

    # Test for finding reaction forces
    p = b1.reaction_loads
    q = {R1: 6, R2: 2}
    assert p == q

    # Test for load distribution function.
    p = b1.load
    q = (
        -8 * SingularityFunction(x, 0, -1)
        + 6 * SingularityFunction(x, 10, -1)
        + 120 * SingularityFunction(x, 30, -2)
        + 2 * SingularityFunction(x, 30, -1)
    )
    assert p == q

    # Test for shear force distribution function
    p = b1.shear_force()
    q = (
        -8 * SingularityFunction(x, 0, 0)
        + 6 * SingularityFunction(x, 10, 0)
        + 120 * SingularityFunction(x, 30, -1)
        + 2 * SingularityFunction(x, 30, 0)
    )
    assert p == q

    # Test for bending moment distribution function
    p = b1.bending_moment()
    q = (
        -8 * SingularityFunction(x, 0, 1)
        + 6 * SingularityFunction(x, 10, 1)
        + 120 * SingularityFunction(x, 30, 0)
        + 2 * SingularityFunction(x, 30, 1)
    )
    assert p == q

    # Test for slope distribution function
    p = b1.slope()
    q = (
        -4 * SingularityFunction(x, 0, 2)
        + 3 * SingularityFunction(x, 10, 2)
        + 120 * SingularityFunction(x, 30, 1)
        + SingularityFunction(x, 30, 2)
        + 4000 / 3
    )
    assert p == q / (E * I)

#.........这里部分代码省略.........
开发者ID:latot,项目名称:sympy,代码行数:103,代码来源:test_beam.py

示例7: test_Beam

# 需要导入模块: from sympy.physics.continuum_mechanics.beam import Beam [as 别名]
# 或者: from sympy.physics.continuum_mechanics.beam.Beam import deflection [as 别名]
def test_Beam():
    E = Symbol('E')
    E_1 = Symbol('E_1')
    I = Symbol('I')
    I_1 = Symbol('I_1')
    b = Beam(1, E, I)
    assert b.length == 1
    assert b.elastic_modulus == E
    assert b.second_moment == I
    assert b.variable == x

    # Test the length setter
    b.length = 4
    assert b.length == 4

    # Test the E setter
    b.elastic_modulus = E_1
    assert b.elastic_modulus == E_1

    # Test the I setter
    b.second_moment = I_1
    assert b.second_moment is I_1

    # Test the variable setter
    b.variable = y
    assert b.variable is y

    # Test for all boundary conditions.
    b.bc_deflection = [(0, 2)]
    b.bc_slope = [(0, 1)]
    assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}

    # Test for slope boundary condition method
    b.bc_slope.extend([(4, 3), (5, 0)])
    s_bcs = b.bc_slope
    assert s_bcs == [(0, 1), (4, 3), (5, 0)]

    # Test for deflection boundary condition method
    b.bc_deflection.extend([(4, 3), (5, 0)])
    d_bcs = b.bc_deflection
    assert d_bcs == [(0, 2), (4, 3), (5, 0)]

    # Test for updated boundary conditions
    bcs_new = b.boundary_conditions
    assert bcs_new == {
        'deflection': [(0, 2), (4, 3), (5, 0)],
        'slope': [(0, 1), (4, 3), (5, 0)]}

    b1 = Beam(30, E, I)
    b1.apply_load(-8, 0, -1)
    b1.apply_load(R1, 10, -1)
    b1.apply_load(R2, 30, -1)
    b1.apply_load(120, 30, -2)
    b1.bc_deflection = [(10, 0), (30, 0)]
    b1.solve_for_reaction_loads(R1, R2)

    # Test for finding reaction forces
    p = b1.reaction_loads
    q = {R1: 6, R2: 2}
    assert p == q

    # Test for load distribution function.
    p = b1.load
    q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
    assert p == q

    # Test for shear force distribution function
    p = b1.shear_force()
    q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b1.bending_moment()
    q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
    assert p == q

    # Test for slope distribution function
    p = b1.slope()
    q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3
    assert p == q/(E*I)

    # Test for deflection distribution function
    p = b1.deflection()
    q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000
    assert p == q/(E*I)

    # Test using symbols
    l = Symbol('l')
    w0 = Symbol('w0')
    w2 = Symbol('w2')
    a1 = Symbol('a1')
    c = Symbol('c')
    c1 = Symbol('c1')
    d = Symbol('d')
    e = Symbol('e')
    f = Symbol('f')

    b2 = Beam(l, E, I)

    b2.apply_load(w0, a1, 1)
#.........这里部分代码省略.........
开发者ID:cklb,项目名称:sympy,代码行数:103,代码来源:test_beam.py


注:本文中的sympy.physics.continuum_mechanics.beam.Beam.deflection方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。