本文整理汇总了Python中sympy.core.basic.C.gamma方法的典型用法代码示例。如果您正苦于以下问题:Python C.gamma方法的具体用法?Python C.gamma怎么用?Python C.gamma使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.core.basic.C
的用法示例。
在下文中一共展示了C.gamma方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def eval(cls, r, k):
r, k = map(sympify, (r, k))
if k.is_Number:
if k is S.Zero:
return S.One
elif k.is_Integer:
if k.is_negative:
return S.Zero
else:
if r.is_Integer and r.is_nonnegative:
r, k = int(r), int(k)
if k > r:
return S.Zero
elif k > r // 2:
k = r - k
M, result = int(sqrt(r)), 1
for prime in sieve.primerange(2, r+1):
if prime > r - k:
result *= prime
elif prime > r // 2:
continue
elif prime > M:
if r % prime < k % prime:
result *= prime
else:
R, K = r, k
exp = a = 0
while R > 0:
a = int((R % prime) < (K % prime + a))
R, K = R // prime, K // prime
exp = a + exp
if exp > 0:
result *= prime**exp
return C.Integer(result)
else:
result = r - k + 1
for i in xrange(2, k+1):
result *= r-k+i
result /= i
return result
if k.is_integer:
if k.is_negative:
return S.Zero
else:
return C.gamma(r+1)/(C.gamma(r-k+1)*C.gamma(k+1))
示例2: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def eval(cls, n, m, x):
if m.could_extract_minus_sign():
# P^{-m}_n ---> F * P^m_n
return S.NegativeOne**(-m) * (C.factorial(m + n)/C.factorial(n - m)) * assoc_legendre(n, -m, x)
if m == 0:
# P^0_n ---> L_n
return legendre(n, x)
if x == 0:
return 2**m*sqrt(S.Pi) / (C.gamma((1 - m - n)/2)*C.gamma(1 - (m - n)/2))
if n.is_Number and m.is_Number and n.is_integer and m.is_integer:
if n.is_negative:
raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n))
if abs(m) > n:
raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m))
return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x)
示例3: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def eval(cls, n, a, x):
# For negative n the polynomials vanish
# See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/
if n.is_negative:
return S.Zero
# Some special values for fixed a
if a == S.Half:
return legendre(n, x)
elif a == S.One:
return chebyshevu(n, x)
elif a == S.NegativeOne:
return S.Zero
if not n.is_Number:
# Handle this before the general sign extraction rule
if x == S.NegativeOne:
if (C.re(a) > S.Half) == True:
return S.ComplexInfinity
else:
# No sec function available yet
# return (C.cos(S.Pi*(a+n)) * C.sec(S.Pi*a) * C.gamma(2*a+n) /
# (C.gamma(2*a) * C.gamma(n+1)))
return None
# Symbolic result C^a_n(x)
# C^a_n(-x) ---> (-1)**n * C^a_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne ** n * gegenbauer(n, a, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return (
2 ** n * sqrt(S.Pi) * C.gamma(a + S.Half * n) / (C.gamma((1 - n) / 2) * C.gamma(n + 1) * C.gamma(a))
)
if x == S.One:
return C.gamma(2 * a + n) / (C.gamma(2 * a) * C.gamma(n + 1))
elif x == S.Infinity:
if n.is_positive:
return C.RisingFactorial(a, n) * S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
return gegenbauer_poly(n, a, x)
示例4: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result L_n(x)
# L_n(-x) ---> (-1)**n * L_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * legendre(n,-x)
# L_{-n}(x) ---> L_{n-1}(x)
if n.could_extract_minus_sign():
return legendre(-n - S.One,x)
# We can evaluate for some special values of x
if x == S.Zero:
return sqrt(S.Pi)/(C.gamma(S.Half - n/2)*C.gamma(S.One + n/2))
elif x == S.One:
return S.One
elif x == S.Infinity:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
raise ValueError("The index n must be nonnegative integer (got %r)" % n)
else:
return cls._eval_at_order(n, x)
示例5: _eval_rewrite_as_gamma
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def _eval_rewrite_as_gamma(self, r, k):
return C.gamma(r+1) / (C.gamma(r-k+1)*C.gamma(k+1))
示例6: _eval_rewrite_as_polynomial
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import gamma [as 别名]
def _eval_rewrite_as_polynomial(self, n, x):
# TODO: Should make sure n is in N_0
k = C.Dummy("k")
kern = C.RisingFactorial(
-n, k) / (C.gamma(k + alpha + 1) * C.factorial(k)) * x**k
return C.gamma(n + alpha + 1) / C.factorial(n) * C.Sum(kern, (k, 0, n))