当前位置: 首页>>代码示例>>Python>>正文


Python basic.C类代码示例

本文整理汇总了Python中sympy.core.basic.C的典型用法代码示例。如果您正苦于以下问题:Python C类的具体用法?Python C怎么用?Python C使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了C类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: eval

    def eval(cls, arg):
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.NegativeInfinity
            elif arg is S.Zero:
                return S.Zero
            elif arg is S.One:
                return C.log(2 ** S.Half + 1)
            elif arg is S.NegativeOne:
                return C.log(2 ** S.Half - 1)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * C.asin(i_coeff)
            else:
                coeff, terms = arg.as_coeff_terms()

                if coeff.is_negative:
                    return -cls(-arg)
开发者ID:nkinar,项目名称:sympy,代码行数:28,代码来源:hyperbolic.py

示例2: monomial_count

def monomial_count(V, N):
    r"""
    Computes the number of monomials.

    The number of monomials is given by the following formula:

    .. math::

        \frac{(\#V + N)!}{\#V! N!}

    where `N` is a total degree and `V` is a set of variables.

    **Examples**

    >>> from sympy import monomials, monomial_count
    >>> from sympy.abc import x, y

    >>> monomial_count(2, 2)
    6

    >>> M = monomials([x, y], 2)

    >>> sorted(M)
    [1, x, y, x**2, y**2, x*y]
    >>> len(M)
    6

    """
    return C.factorial(V + N) / C.factorial(V) / C.factorial(N)
开发者ID:TeddyBoomer,项目名称:wxgeometrie,代码行数:29,代码来源:monomialtools.py

示例3: _eval_expand_trig

    def _eval_expand_trig(self, **hints):
        from sympy import expand_mul
        arg = self.args[0]
        x = None
        if arg.is_Add:  # TODO, implement more if deep stuff here
            # TODO: Do this more efficiently for more than two terms
            x, y = arg.as_two_terms()
            sx = sin(x, evaluate=False)._eval_expand_trig()
            sy = sin(y, evaluate=False)._eval_expand_trig()
            cx = cos(x, evaluate=False)._eval_expand_trig()
            cy = cos(y, evaluate=False)._eval_expand_trig()
            return sx*cy + sy*cx
        else:
            n, x = arg.as_coeff_Mul(rational=True)
            if n.is_Integer:  # n will be positive because of .eval
                # canonicalization

                # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
                if n.is_odd:
                    return (-1)**((n - 1)/2)*C.chebyshevt(n, sin(x))
                else:
                    return expand_mul((-1)**(n/2 - 1)*cos(x)*C.chebyshevu(n -
                        1, sin(x)), deep=False)
            pi_coeff = _pi_coeff(arg)
            if pi_coeff is not None:
                if pi_coeff.is_Rational:
                    return self.rewrite(sqrt)
        return sin(arg)
开发者ID:bhlegm,项目名称:sympy,代码行数:28,代码来源:trigonometric.py

示例4: vertices

 def vertices(self):
     points = []
     c, r, n = self
     v = 2*S.Pi/n
     for k in xrange(0, n):
         points.append( Point(c[0] + r*C.cos(k*v), c[1] + r*C.sin(k*v)) )
     return points
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:7,代码来源:polygon.py

示例5: _eval_expand_complex

 def _eval_expand_complex(self, *args):
     if self.args[0].is_real:
         return self
     re, im = self.args[0].as_real_imag()
     denom = sin(re)**2 + C.sinh(im)**2
     return (sin(re)*cos(re) - \
         S.ImaginaryUnit*C.sinh(im)*C.cosh(im))/denom
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:7,代码来源:trigonometric.py

示例6: solve_ODE_first_order

def solve_ODE_first_order(eq, f):
    """
    solves many kinds of first order odes, different methods are used
    depending on the form of the given equation. Now the linear
    and Bernoulli cases are implemented.
    """
    from sympy.integrals.integrals import integrate
    x = f.args[0]
    f = f.func

    #linear case: a(x)*f'(x)+b(x)*f(x)+c(x) = 0
    a = Wild('a', exclude=[f(x)])
    b = Wild('b', exclude=[f(x)])
    c = Wild('c', exclude=[f(x)])

    r = eq.match(a*diff(f(x),x) + b*f(x) + c)
    if r:
        t = C.exp(integrate(r[b]/r[a], x))
        tt = integrate(t*(-r[c]/r[a]), x)
        return (tt + Symbol("C1"))/t

    #Bernoulli case: a(x)*f'(x)+b(x)*f(x)+c(x)*f(x)^n = 0
    n = Wild('n', exclude=[f(x)])

    r = eq.match(a*diff(f(x),x) + b*f(x) + c*f(x)**n)
    if r:
        t = C.exp((1-r[n])*integrate(r[b]/r[a],x))
        tt = (r[n]-1)*integrate(t*r[c]/r[a],x)
        return ((tt + Symbol("C1"))/t)**(1/(1-r[n]))

    #other cases of first order odes will be implemented here

    raise NotImplementedError("solve_ODE_first_order: Cannot solve " + str(eq))
开发者ID:gnulinooks,项目名称:sympy,代码行数:33,代码来源:solvers.py

示例7: _eval_expand_complex

 def _eval_expand_complex(self, deep=True, **hints):
     re, im = self.args[0].as_real_imag()
     if deep:
         re = re.expand(deep, **hints)
         im = im.expand(deep, **hints)
     cos, sin = C.cos(im), C.sin(im)
     return exp(re) * cos + S.ImaginaryUnit * exp(re) * sin
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:7,代码来源:exponential.py

示例8: _eval_expand_trig

    def _eval_expand_trig(self, **hints):
        arg = self.args[0]
        x = None
        if arg.is_Add:
            from sympy import symmetric_poly

            n = len(arg.args)
            CX = []
            for x in arg.args:
                cx = cot(x, evaluate=False)._eval_expand_trig()
                CX.append(cx)

            Yg = numbered_symbols("Y")
            Y = [Yg.next() for i in xrange(n)]

            p = [0, 0]
            for i in xrange(n, -1, -1):
                p[(n - i) % 2] += symmetric_poly(i, Y) * (-1) ** (((n - i) % 4) // 2)
            return (p[0] / p[1]).subs(zip(Y, CX))
        else:
            coeff, terms = arg.as_coeff_Mul(rational=True)
            if coeff.is_Integer and coeff > 1:
                I = S.ImaginaryUnit
                z = C.Symbol("dummy", real=True)
                P = ((z + I) ** coeff).expand()
                return (C.re(P) / C.im(P)).subs([(z, cot(terms))])
        return cot(arg)
开发者ID:amitjamadagni,项目名称:sympy,代码行数:27,代码来源:trigonometric.py

示例9: _eval_rewrite_as_polynomial

 def _eval_rewrite_as_polynomial(self, n, m, x):
     k = C.Dummy("k")
     kern = (
         C.factorial(2 * n - 2 * k)
         / (2 ** n * C.factorial(n - k) * C.factorial(k) * C.factorial(n - 2 * k - m))
         * (-1) ** k
         * x ** (n - m - 2 * k)
     )
     return (1 - x ** 2) ** (m / 2) * C.Sum(kern, (k, 0, C.floor((n - m) * S.Half)))
开发者ID:B-Rich,项目名称:sympy,代码行数:9,代码来源:polynomials.py

示例10: _eval_expand_func

 def _eval_expand_func(self, **hints):
     n, m, theta, phi = self.args
     rv = (
         sqrt((2 * n + 1) / (4 * pi) * C.factorial(n - m) / C.factorial(n + m))
         * C.exp(I * m * phi)
         * assoc_legendre(n, m, C.cos(theta))
     )
     # We can do this because of the range of theta
     return rv.subs(sqrt(-cos(theta) ** 2 + 1), sin(theta))
开发者ID:vramana,项目名称:sympy,代码行数:9,代码来源:spherical_harmonics.py

示例11: solve_ODE_second_order

def solve_ODE_second_order(eq, f):
    """
    solves many kinds of second order odes, different methods are used
    depending on the form of the given equation. So far the constants
    coefficients case and a special case are implemented.
    """
    x = f.args[0]
    f = f.func

    #constant coefficients case: af''(x)+bf'(x)+cf(x)=0
    a = Wild('a', exclude=[x])
    b = Wild('b', exclude=[x])
    c = Wild('c', exclude=[x])

    r = eq.match(a*f(x).diff(x,x) + c*f(x))
    if r:
        return Symbol("C1")*C.sin(sqrt(r[c]/r[a])*x)+Symbol("C2")*C.cos(sqrt(r[c]/r[a])*x)

    r = eq.match(a*f(x).diff(x,x) + b*diff(f(x),x) + c*f(x))
    if r:
        r1 = solve(r[a]*x**2 + r[b]*x + r[c], x)
        if r1[0].is_real:
            if len(r1) == 1:
                return (Symbol("C1") + Symbol("C2")*x)*exp(r1[0]*x)
            else:
                return Symbol("C1")*exp(r1[0]*x) + Symbol("C2")*exp(r1[1]*x)
        else:
            r2 = abs((r1[0] - r1[1])/(2*S.ImaginaryUnit))
            return (Symbol("C2")*C.cos(r2*x) + Symbol("C1")*C.sin(r2*x))*exp((r1[0] + r1[1])*x/2)

    #other cases of the second order odes will be implemented here

    #special equations, that we know how to solve
    a = Wild('a')
    t = x*exp(f(x))
    tt = a*t.diff(x, x)/t
    r = eq.match(tt.expand())
    if r:
        return -solve_ODE_1(f(x), x)

    t = x*exp(-f(x))
    tt = a*t.diff(x, x)/t
    r = eq.match(tt.expand())
    if r:
        #check, that we've rewritten the equation correctly:
        #assert ( r[a]*t.diff(x,2)/t ) == eq.subs(f, t)
        return solve_ODE_1(f(x), x)

    neq = eq*exp(f(x))/exp(-f(x))
    r = neq.match(tt.expand())
    if r:
        #check, that we've rewritten the equation correctly:
        #assert ( t.diff(x,2)*r[a]/t ).expand() == eq
        return solve_ODE_1(f(x), x)

    raise NotImplementedError("solve_ODE_second_order: cannot solve " + str(eq))
开发者ID:cran,项目名称:rSymPy,代码行数:56,代码来源:solvers.py

示例12: eval

    def eval(cls, r, k):
        r, k = map(sympify, (r, k))

        if k.is_Number:
            if k is S.Zero:
                return S.One
            elif k.is_Integer:
                if k.is_negative:
                    return S.Zero
                else:
                    if r.is_Integer and r.is_nonnegative:
                        r, k = int(r), int(k)

                        if k > r:
                            return S.Zero
                        elif k > r // 2:
                            k = r - k

                        M, result = int(sqrt(r)), 1

                        for prime in sieve.primerange(2, r+1):
                            if prime > r - k:
                                result *= prime
                            elif prime > r // 2:
                                continue
                            elif prime > M:
                                if r % prime < k % prime:
                                    result *= prime
                            else:
                                R, K = r, k
                                exp = a = 0

                                while R > 0:
                                    a = int((R % prime) < (K % prime + a))
                                    R, K = R // prime, K // prime
                                    exp = a + exp

                                if exp > 0:
                                    result *= prime**exp

                        return C.Integer(result)
                    else:
                        result = r - k + 1

                        for i in xrange(2, k+1):
                            result *= r-k+i
                            result /= i

                        return result

        if k.is_integer:
            if k.is_negative:
                return S.Zero
        else:
            return C.gamma(r+1)/(C.gamma(r-k+1)*C.gamma(k+1))
开发者ID:bibile,项目名称:sympy,代码行数:55,代码来源:factorials.py

示例13: _eval_expand_complex

 def _eval_expand_complex(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             hints['complex'] = False
             return self.expand(deep, **hints)
         else:
             return self
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     return sin(re)*C.cosh(im) + S.ImaginaryUnit*cos(re)*C.sinh(im)
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:12,代码来源:trigonometric.py

示例14: taylor_term

    def taylor_term(n, x, *previous_terms):
        if n == 0:
            return 1 / sympify(x)
        elif n < 0 or n % 2 == 0:
            return S.Zero
        else:
            x = sympify(x)

            B = C.bernoulli(n+1)
            F = C.factorial(n+1)

            return (-1)**((n+1)//2) * 2**(n+1) * B/F * x**n
开发者ID:jcreus,项目名称:sympy,代码行数:12,代码来源:trigonometric.py

示例15: as_real_imag

 def as_real_imag(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             return (self.expand(deep, **hints), S.Zero)
         else:
             return (self, S.Zero)
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     denom = sinh(re) ** 2 + C.sin(im) ** 2
     return (sinh(re) * cosh(re) / denom, -C.sin(im) * C.cos(im) / denom)
开发者ID:nkinar,项目名称:sympy,代码行数:12,代码来源:hyperbolic.py


注:本文中的sympy.core.basic.C类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。