本文整理汇总了Python中sympy.core.basic.C.exp方法的典型用法代码示例。如果您正苦于以下问题:Python C.exp方法的具体用法?Python C.exp怎么用?Python C.exp使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.core.basic.C
的用法示例。
在下文中一共展示了C.exp方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: solve_ODE_first_order
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def solve_ODE_first_order(eq, f):
"""
solves many kinds of first order odes, different methods are used
depending on the form of the given equation. Now the linear
and Bernoulli cases are implemented.
"""
from sympy.integrals.integrals import integrate
x = f.args[0]
f = f.func
#linear case: a(x)*f'(x)+b(x)*f(x)+c(x) = 0
a = Wild('a', exclude=[f(x)])
b = Wild('b', exclude=[f(x)])
c = Wild('c', exclude=[f(x)])
r = eq.match(a*diff(f(x),x) + b*f(x) + c)
if r:
t = C.exp(integrate(r[b]/r[a], x))
tt = integrate(t*(-r[c]/r[a]), x)
return (tt + Symbol("C1"))/t
#Bernoulli case: a(x)*f'(x)+b(x)*f(x)+c(x)*f(x)^n = 0
n = Wild('n', exclude=[f(x)])
r = eq.match(a*diff(f(x),x) + b*f(x) + c*f(x)**n)
if r:
t = C.exp((1-r[n])*integrate(r[b]/r[a],x))
tt = (r[n]-1)*integrate(t*r[c]/r[a],x)
return ((tt + Symbol("C1"))/t)**(1/(1-r[n]))
#other cases of first order odes will be implemented here
raise NotImplementedError("solve_ODE_first_order: Cannot solve " + str(eq))
示例2: solve_ODE_second_order
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def solve_ODE_second_order(eq, f):
"""
solves many kinds of second order odes, different methods are used
depending on the form of the given equation. So far the constants
coefficients case and a special case are implemented.
"""
x = f.args[0]
f = f.func
#constant coefficients case: af''(x)+bf'(x)+cf(x)=0
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
r = eq.match(a*f(x).diff(x,x) + c*f(x))
if r:
return Symbol("C1")*C.sin(sqrt(r[c]/r[a])*x)+Symbol("C2")*C.cos(sqrt(r[c]/r[a])*x)
r = eq.match(a*f(x).diff(x,x) + b*diff(f(x),x) + c*f(x))
if r:
r1 = solve(r[a]*x**2 + r[b]*x + r[c], x)
if r1[0].is_real:
if len(r1) == 1:
return (Symbol("C1") + Symbol("C2")*x)*exp(r1[0]*x)
else:
return Symbol("C1")*exp(r1[0]*x) + Symbol("C2")*exp(r1[1]*x)
else:
r2 = abs((r1[0] - r1[1])/(2*S.ImaginaryUnit))
return (Symbol("C2")*C.cos(r2*x) + Symbol("C1")*C.sin(r2*x))*exp((r1[0] + r1[1])*x/2)
#other cases of the second order odes will be implemented here
#special equations, that we know how to solve
a = Wild('a')
t = x*C.exp(f(x))
tt = a*t.diff(x, x)/t
r = eq.match(tt.expand())
if r:
return -solve_ODE_1(f(x), x)
t = x*C.exp(-f(x))
tt = a*t.diff(x, x)/t
r = eq.match(tt.expand())
if r:
#check, that we've rewritten the equation correctly:
#assert ( r[a]*t.diff(x,2)/t ) == eq.subs(f, t)
return solve_ODE_1(f(x), x)
neq = eq*C.exp(f(x))/C.exp(-f(x))
r = neq.match(tt.expand())
if r:
#check, that we've rewritten the equation correctly:
#assert ( t.diff(x,2)*r[a]/t ).expand() == eq
return solve_ODE_1(f(x), x)
raise NotImplementedError("solve_ODE_second_order: cannot solve " + str(eq))
示例3: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def eval(cls, n, m, theta, phi):
n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)]
# Handle negative index m and arguments theta, phi
if m.could_extract_minus_sign():
m = -m
return S.NegativeOne**m * C.exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
if theta.could_extract_minus_sign():
theta = -theta
return Ynm(n, m, theta, phi)
if phi.could_extract_minus_sign():
phi = -phi
return C.exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
示例4: _eval_expand_func
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def _eval_expand_func(self, **hints):
n, m, theta, phi = self.args
rv = (
sqrt((2 * n + 1) / (4 * pi) * C.factorial(n - m) / C.factorial(n + m))
* C.exp(I * m * phi)
* assoc_legendre(n, m, C.cos(theta))
)
# We can do this because of the range of theta
return rv.subs(sqrt(-cos(theta) ** 2 + 1), sin(theta))
示例5: fdiff
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def fdiff(self, argindex=4):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt m
raise ArgumentIndexError(self, argindex)
elif argindex == 3:
# Diff wrt theta
n, m, theta, phi = self.args
return (m * C.cot(theta) * Ynm(n, m, theta, phi) +
sqrt((n - m)*(n + m + 1)) * C.exp(-I*phi) * Ynm(n, m + 1, theta, phi))
elif argindex == 4:
# Diff wrt phi
n, m, theta, phi = self.args
return I * m * Ynm(n, m, theta, phi)
else:
raise ArgumentIndexError(self, argindex)
示例6: eval
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result L_n(x)
# L_{n}(-x) ---> exp(-x) * L_{-n-1}(x)
# L_{-n}(x) ---> exp(x) * L_{n-1}(-x)
if n.could_extract_minus_sign():
return C.exp(x) * laguerre(n-1, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return S.One
elif x == S.NegativeInfinity:
return S.Infinity
elif x == S.Infinity:
return S.NegativeOne**n * S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
raise ValueError("The index n must be nonnegative integer (got %r)" % n)
else:
return laguerre_poly(n, x, 0)
示例7: fdiff
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def fdiff(self, argindex=1):
if argindex == 1:
return 2*C.exp(-self.args[0]**2)/sqrt(S.Pi)
else:
raise ArgumentIndexError(self, argindex)
示例8: _eval_rewrite_as_exp
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def _eval_rewrite_as_exp(self, arg):
neg_exp, pos_exp = C.exp(-arg), C.exp(arg)
return (pos_exp + neg_exp) / (pos_exp - neg_exp)
示例9: _eval_expand_func
# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import exp [as 别名]
def _eval_expand_func(self, **hints):
n, m, theta, phi = self.args
return (sqrt((2*n + 1)/(4*pi) * C.factorial(n - m)/C.factorial(n + m)) *
C.exp(I*m*phi) * assoc_legendre(n, m, C.cos(theta)))