当前位置: 首页>>代码示例>>Python>>正文


Python C.cos方法代码示例

本文整理汇总了Python中sympy.core.basic.C.cos方法的典型用法代码示例。如果您正苦于以下问题:Python C.cos方法的具体用法?Python C.cos怎么用?Python C.cos使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.core.basic.C的用法示例。


在下文中一共展示了C.cos方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _eval_expand_complex

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def _eval_expand_complex(self, *args):
     if self.args[0].is_real:
         return self
     re, im = self.args[0].as_real_imag()
     denom = sinh(re)**2 + C.cos(im)**2
     return (sinh(re)*cosh(re) + \
         S.ImaginaryUnit*C.sin(im)*C.cos(im))/denom
开发者ID:ryanGT,项目名称:sympy,代码行数:9,代码来源:hyperbolic.py

示例2: as_real_imag

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def as_real_imag(self, deep=True, **hints):
     # TODO: Handle deep and hints
     n, m, theta, phi = self.args
     re = (sqrt((2*n + 1)/(4*pi) * C.factorial(n - m)/C.factorial(n + m)) *
           C.cos(m*phi) * assoc_legendre(n, m, C.cos(theta)))
     im = (sqrt((2*n + 1)/(4*pi) * C.factorial(n - m)/C.factorial(n + m)) *
           C.sin(m*phi) * assoc_legendre(n, m, C.cos(theta)))
     return (re, im)
开发者ID:Amo10,项目名称:Computer-Science-2014-2015,代码行数:10,代码来源:spherical_harmonics.py

示例3: solve_ODE_second_order

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
def solve_ODE_second_order(eq, f):
    """
    solves many kinds of second order odes, different methods are used
    depending on the form of the given equation. So far the constants
    coefficients case and a special case are implemented.
    """
    x = f.args[0]
    f = f.func

    #constant coefficients case: af''(x)+bf'(x)+cf(x)=0
    a = Wild('a', exclude=[x])
    b = Wild('b', exclude=[x])
    c = Wild('c', exclude=[x])

    r = eq.match(a*f(x).diff(x,x) + c*f(x))
    if r:
        return Symbol("C1")*C.sin(sqrt(r[c]/r[a])*x)+Symbol("C2")*C.cos(sqrt(r[c]/r[a])*x)

    r = eq.match(a*f(x).diff(x,x) + b*diff(f(x),x) + c*f(x))
    if r:
        r1 = solve(r[a]*x**2 + r[b]*x + r[c], x)
        if r1[0].is_real:
            if len(r1) == 1:
                return (Symbol("C1") + Symbol("C2")*x)*exp(r1[0]*x)
            else:
                return Symbol("C1")*exp(r1[0]*x) + Symbol("C2")*exp(r1[1]*x)
        else:
            r2 = abs((r1[0] - r1[1])/(2*S.ImaginaryUnit))
            return (Symbol("C2")*C.cos(r2*x) + Symbol("C1")*C.sin(r2*x))*exp((r1[0] + r1[1])*x/2)

    #other cases of the second order odes will be implemented here

    #special equations, that we know how to solve
    a = Wild('a')
    t = x*exp(f(x))
    tt = a*t.diff(x, x)/t
    r = eq.match(tt.expand())
    if r:
        return -solve_ODE_1(f(x), x)

    t = x*exp(-f(x))
    tt = a*t.diff(x, x)/t
    r = eq.match(tt.expand())
    if r:
        #check, that we've rewritten the equation correctly:
        #assert ( r[a]*t.diff(x,2)/t ) == eq.subs(f, t)
        return solve_ODE_1(f(x), x)

    neq = eq*exp(f(x))/exp(-f(x))
    r = neq.match(tt.expand())
    if r:
        #check, that we've rewritten the equation correctly:
        #assert ( t.diff(x,2)*r[a]/t ).expand() == eq
        return solve_ODE_1(f(x), x)

    raise NotImplementedError("solve_ODE_second_order: cannot solve " + str(eq))
开发者ID:cran,项目名称:rSymPy,代码行数:58,代码来源:solvers.py

示例4: as_real_imag

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def as_real_imag(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             hints["complex"] = False
             return (self.expand(deep, **hints), S.Zero)
         else:
             return (self, S.Zero)
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     denom = sinh(re) ** 2 + C.cos(im) ** 2
     return (sinh(re) * cosh(re) / denom, C.sin(im) * C.cos(im) / denom)
开发者ID:nkinar,项目名称:sympy,代码行数:15,代码来源:hyperbolic.py

示例5: _eval_expand_complex

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def _eval_expand_complex(self, deep=True, **hints):
     if self.args[0].is_real:
         if deep:
             hints['complex'] = False
             return self.expand(deep, **hints)
         else:
             return self
     if deep:
         re, im = self.args[0].expand(deep, **hints).as_real_imag()
     else:
         re, im = self.args[0].as_real_imag()
     denom = sinh(re)**2 + C.cos(im)**2
     return (sinh(re)*cosh(re) + \
         S.ImaginaryUnit*C.sin(im)*C.cos(im))/denom
开发者ID:tovrstra,项目名称:sympy,代码行数:16,代码来源:hyperbolic.py

示例6: eval

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
    def eval(cls, arg):
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.Zero:
                return S.One
            elif arg.is_negative:
                return cls(-arg)
        else:
            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return C.cos(i_coeff)
            else:
                coeff, terms = arg.as_coeff_terms()

                if coeff.is_negative:
                    return cls(-arg)

            if arg.func == asinh:
                return sqrt(1 + arg.args[0] ** 2)

            if arg.func == acosh:
                return arg.args[0]

            if arg.func == atanh:
                return 1 / sqrt(1 - arg.args[0] ** 2)
开发者ID:nkinar,项目名称:sympy,代码行数:35,代码来源:hyperbolic.py

示例7: apothem

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def apothem(self):
     """
     Returns the apothem/inradius of the regular polygon (i.e., the
     radius of the inscribed circle).
     """
     n = self.__getitem__(2)
     return self.radius * C.cos(S.Pi/n)
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:9,代码来源:polygon.py

示例8: vertices

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def vertices(self):
     points = []
     c, r, n = self
     v = 2*S.Pi/n
     for k in xrange(0, n):
         points.append( Point(c[0] + r*C.cos(k*v), c[1] + r*C.sin(k*v)) )
     return points
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:9,代码来源:polygon.py

示例9: _eval_expand_complex

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def _eval_expand_complex(self, deep=True, **hints):
     re, im = self.args[0].as_real_imag()
     if deep:
         re = re.expand(deep, **hints)
         im = im.expand(deep, **hints)
     cos, sin = C.cos(im), C.sin(im)
     return exp(re) * cos + S.ImaginaryUnit * exp(re) * sin
开发者ID:Praveen-Ramanujam,项目名称:MobRAVE,代码行数:9,代码来源:exponential.py

示例10: eval

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def eval(cls, n, x):
     if not n.is_Number:
         # Symbolic result U_n(x)
         # U_n(-x)  --->  (-1)**n * U_n(x)
         if x.could_extract_minus_sign():
             return S.NegativeOne**n * chebyshevu(n, -x)
         # U_{-n}(x)  --->  -U_{n-2}(x)
         if n.could_extract_minus_sign():
             if n == S.NegativeOne:
                 return S.Zero
             else:
                 return -chebyshevu(-n - 2, x)
         # We can evaluate for some special values of x
         if x == S.Zero:
             return C.cos(S.Half * S.Pi * n)
         if x == S.One:
             return S.One + n
         elif x == S.Infinity:
             return S.Infinity
     else:
         # n is a given fixed integer, evaluate into polynomial
         if n.is_negative:
             # U_{-n}(x)  --->  -U_{n-2}(x)
             if n == S.NegativeOne:
                 return S.Zero
             else:
                 return -cls._eval_at_order(-n - 2, x)
         else:
             return cls._eval_at_order(n, x)
开发者ID:twobitlogic,项目名称:sympy,代码行数:31,代码来源:polynomials.py

示例11: _eval_expand_func

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def _eval_expand_func(self, **hints):
     n, m, theta, phi = self.args
     rv = (
         sqrt((2 * n + 1) / (4 * pi) * C.factorial(n - m) / C.factorial(n + m))
         * C.exp(I * m * phi)
         * assoc_legendre(n, m, C.cos(theta))
     )
     # We can do this because of the range of theta
     return rv.subs(sqrt(-cos(theta) ** 2 + 1), sin(theta))
开发者ID:vramana,项目名称:sympy,代码行数:11,代码来源:spherical_harmonics.py

示例12: canonize

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def canonize(cls, n, k):
     if not 0 <= k < n:
         raise ValueError("must have 0 <= k < n")
     return C.cos(S.Pi*(2*k+1)/(2*n))
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:6,代码来源:polynomials.py

示例13: arbitrary_point

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def arbitrary_point(self, parameter_name='t'):
     """Returns a symbolic point that is on the ellipse."""
     t = C.Symbol(parameter_name, real=True)
     return Point(
             self.center[0] + self.hradius*C.cos(t),
             self.center[1] + self.vradius*C.sin(t))
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:8,代码来源:ellipse.py

示例14: _eval_expand_complex

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def _eval_expand_complex(self, *args):
     re, im = self.args[0].as_real_imag()
     cos, sin = C.cos(im), C.sin(im)
     return exp(re) * cos + S.ImaginaryUnit * exp(re) * sin
开发者ID:jcockayne,项目名称:sympy-rkern,代码行数:6,代码来源:exponential.py

示例15: eval

# 需要导入模块: from sympy.core.basic import C [as 别名]
# 或者: from sympy.core.basic.C import cos [as 别名]
 def eval(cls, n, k):
     if not ((0 <= k) is (k < n) is True):
         raise ValueError("must have 0 <= k < n, "
             "got k = %s and n = %s" % (k, n))
     return C.cos(S.Pi*(k + 1)/(n + 1))
开发者ID:Tkizzy,项目名称:PythonistaAppTemplate,代码行数:7,代码来源:polynomials.py


注:本文中的sympy.core.basic.C.cos方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。