本文整理汇总了Python中sympy.assumptions.Q.prime方法的典型用法代码示例。如果您正苦于以下问题:Python Q.prime方法的具体用法?Python Q.prime怎么用?Python Q.prime使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.assumptions.Q
的用法示例。
在下文中一共展示了Q.prime方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_float_1
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_float_1():
z = 1.0
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == True
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == True
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == True
z = 7.2123
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例2: test_negative
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_negative():
x, y = symbols('x,y')
assert ask(Q.negative(x), Q.negative(x)) == True
assert ask(Q.negative(x), Q.positive(x)) == False
assert ask(Q.negative(x), ~Q.real(x)) == False
assert ask(Q.negative(x), Q.prime(x)) == False
assert ask(Q.negative(x), ~Q.prime(x)) == None
assert ask(Q.negative(-x), Q.positive(x)) == True
assert ask(Q.negative(-x), ~Q.positive(x)) == None
assert ask(Q.negative(-x), Q.negative(x)) == False
assert ask(Q.negative(-x), Q.positive(x)) == True
assert ask(Q.negative(x-1), Q.negative(x)) == True
assert ask(Q.negative(x+y)) == None
assert ask(Q.negative(x+y), Q.negative(x)) == None
assert ask(Q.negative(x+y), Q.negative(x) & Q.negative(y)) == True
assert ask(Q.negative(x**2)) == None
assert ask(Q.negative(x**2), Q.real(x)) == False
assert ask(Q.negative(x**1.4), Q.real(x)) == None
assert ask(Q.negative(x*y)) == None
assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) == False
assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) == True
assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) == None
assert ask(Q.negative(x**y)) == None
assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) == False
assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) == True
assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) == False
assert ask(Q.negative(Abs(x))) == False
示例3: test_I
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_I():
I = S.ImaginaryUnit
z = I
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == True
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = 1 + I
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = I*(1+I)
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例4: Basic
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def Basic(expr, assumptions):
_positive = ask(Q.positive(expr), assumptions)
if _positive:
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_prime = ask(Q.prime(expr), assumptions)
if _prime is None: return
return not _prime
else: return _integer
else: return _positive
示例5: Pow
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def Pow(expr, assumptions):
"""
Rational ** Integer -> Rational
Irrational ** Rational -> Irrational
Rational ** Irrational -> ?
"""
if ask(Q.integer(expr.exp), assumptions):
return ask(Q.rational(expr.base), assumptions)
elif ask(Q.rational(expr.exp), assumptions):
if ask(Q.prime(expr.base), assumptions):
return False
示例6: test_incompatible_resolutors
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_incompatible_resolutors():
x = symbols('x')
class Prime2AskHandler(AskHandler):
@staticmethod
def Number(expr, assumptions):
return True
register_handler('prime', Prime2AskHandler)
raises(ValueError, 'ask(Q.prime(4))')
remove_handler('prime', Prime2AskHandler)
class InconclusiveHandler(AskHandler):
@staticmethod
def Number(expr, assumptions):
return None
register_handler('prime', InconclusiveHandler)
assert ask(Q.prime(3)) == True
示例7: test_E
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_E():
z = S.Exp1
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例8: test_zero_0
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_zero_0():
z = Integer(0)
assert ask(Q.nonzero(z)) == False
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == True
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == True
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == True
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例9: Basic
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def Basic(expr, assumptions):
_positive = ask(Q.positive(expr), assumptions)
if _positive:
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_prime = ask(Q.prime(expr), assumptions)
if _prime is None:
return
# Positive integer which is not prime is not
# necessarily composite
if expr.equals(1):
return False
return not _prime
else:
return _integer
else:
return _positive
示例10: test_Rational_number
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_Rational_number():
r = Rational(3,4)
assert ask(Q.commutative(r)) == True
assert ask(Q.integer(r)) == False
assert ask(Q.rational(r)) == True
assert ask(Q.real(r)) == True
assert ask(Q.complex(r)) == True
assert ask(Q.irrational(r)) == False
assert ask(Q.imaginary(r)) == False
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
assert ask(Q.even(r)) == False
assert ask(Q.odd(r)) == False
assert ask(Q.bounded(r)) == True
assert ask(Q.infinitesimal(r)) == False
assert ask(Q.prime(r)) == False
assert ask(Q.composite(r)) == False
r = Rational(1,4)
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
r = Rational(5,4)
assert ask(Q.negative(r)) == False
assert ask(Q.positive(r)) == True
r = Rational(5,3)
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
r = Rational(-3,4)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
r = Rational(-1,4)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
r = Rational(-5,4)
assert ask(Q.negative(r)) == True
assert ask(Q.positive(r)) == False
r = Rational(-5,3)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
示例11: test_infinity
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_infinity():
oo = S.Infinity
assert ask(Q.commutative(oo)) == True
assert ask(Q.integer(oo)) == False
assert ask(Q.rational(oo)) == False
assert ask(Q.real(oo)) == False
assert ask(Q.extended_real(oo)) == True
assert ask(Q.complex(oo)) == False
assert ask(Q.irrational(oo)) == False
assert ask(Q.imaginary(oo)) == False
assert ask(Q.positive(oo)) == True
assert ask(Q.negative(oo)) == False
assert ask(Q.even(oo)) == False
assert ask(Q.odd(oo)) == False
assert ask(Q.bounded(oo)) == False
assert ask(Q.infinitesimal(oo)) == False
assert ask(Q.prime(oo)) == False
assert ask(Q.composite(oo)) == False
示例12: test_nan
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_nan():
nan = S.NaN
assert ask(Q.commutative(nan)) == True
assert ask(Q.integer(nan)) == False
assert ask(Q.rational(nan)) == False
assert ask(Q.real(nan)) == False
assert ask(Q.extended_real(nan)) == False
assert ask(Q.complex(nan)) == False
assert ask(Q.irrational(nan)) == False
assert ask(Q.imaginary(nan)) == False
assert ask(Q.positive(nan)) == False
assert ask(Q.nonzero(nan)) == True
assert ask(Q.even(nan)) == False
assert ask(Q.odd(nan)) == False
assert ask(Q.bounded(nan)) == False
assert ask(Q.infinitesimal(nan)) == False
assert ask(Q.prime(nan)) == False
assert ask(Q.composite(nan)) == False
示例13: test_neg_infinity
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_neg_infinity():
mm = S.NegativeInfinity
assert ask(Q.commutative(mm)) == True
assert ask(Q.integer(mm)) == False
assert ask(Q.rational(mm)) == False
assert ask(Q.real(mm)) == False
assert ask(Q.extended_real(mm)) == True
assert ask(Q.complex(mm)) == False
assert ask(Q.irrational(mm)) == False
assert ask(Q.imaginary(mm)) == False
assert ask(Q.positive(mm)) == False
assert ask(Q.negative(mm)) == True
assert ask(Q.even(mm)) == False
assert ask(Q.odd(mm)) == False
assert ask(Q.bounded(mm)) == False
assert ask(Q.infinitesimal(mm)) == False
assert ask(Q.prime(mm)) == False
assert ask(Q.composite(mm)) == False
示例14: test_real
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_real():
x, y = symbols('x,y')
assert ask(Q.real(x)) == None
assert ask(Q.real(x), Q.real(x)) == True
assert ask(Q.real(x), Q.nonzero(x)) == True
assert ask(Q.real(x), Q.positive(x)) == True
assert ask(Q.real(x), Q.negative(x)) == True
assert ask(Q.real(x), Q.integer(x)) == True
assert ask(Q.real(x), Q.even(x)) == True
assert ask(Q.real(x), Q.prime(x)) == True
assert ask(Q.real(x/sqrt(2)), Q.real(x)) == True
assert ask(Q.real(x/sqrt(-2)), Q.real(x)) == False
I = S.ImaginaryUnit
assert ask(Q.real(x+1), Q.real(x)) == True
assert ask(Q.real(x+I), Q.real(x)) == False
assert ask(Q.real(x+I), Q.complex(x)) == None
assert ask(Q.real(2*x), Q.real(x)) == True
assert ask(Q.real(I*x), Q.real(x)) == False
assert ask(Q.real(I*x), Q.imaginary(x)) == True
assert ask(Q.real(I*x), Q.complex(x)) == None
assert ask(Q.real(x**2), Q.real(x)) == True
assert ask(Q.real(sqrt(x)), Q.negative(x)) == False
assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) == True
assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) == None
assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) == True
# trigonometric functions
assert ask(Q.real(sin(x))) == None
assert ask(Q.real(cos(x))) == None
assert ask(Q.real(sin(x)), Q.real(x)) == True
assert ask(Q.real(cos(x)), Q.real(x)) == True
# exponential function
assert ask(Q.real(exp(x))) == None
assert ask(Q.real(exp(x)), Q.real(x)) == True
assert ask(Q.real(x + exp(x)), Q.real(x)) == True
# Q.complexes
assert ask(Q.real(re(x))) == True
assert ask(Q.real(im(x))) == True
示例15: test_type_extensibility
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import prime [as 别名]
def test_type_extensibility():
"""test that new types can be added to the ask system at runtime
We create a custom type MyType, and override ask Q.prime=True with handler
MyAskHandler for this type
TODO: test incompatible resolutors
"""
from sympy.core import Basic
class MyType(Basic):
pass
class MyAskHandler(AskHandler):
@staticmethod
def MyType(expr, assumptions):
return True
a = MyType()
register_handler(Q.prime, MyAskHandler)
assert ask(Q.prime(a)) == True