本文整理汇总了Python中sympy.assumptions.Q.commutative方法的典型用法代码示例。如果您正苦于以下问题:Python Q.commutative方法的具体用法?Python Q.commutative怎么用?Python Q.commutative使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.assumptions.Q
的用法示例。
在下文中一共展示了Q.commutative方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_float_1
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_float_1():
z = 1.0
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == True
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == True
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == True
z = 7.2123
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例2: Symbol
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def Symbol(expr, assumptions):
"""Objects are expected to be commutative unless otherwise stated"""
assumps = conjuncts(assumptions)
if Q.commutative(expr) in assumps:
return True
elif ~Q.commutative(expr) in assumps:
return False
return True
示例3: test_I
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_I():
I = S.ImaginaryUnit
z = I
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == True
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = 1 + I
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = I*(1+I)
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == False
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == False
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例4: test_composite_proposition
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_composite_proposition():
from sympy.logic.boolalg import Equivalent, Implies
x = symbols('x')
assert ask(True) is True
assert ask(~Q.negative(x), Q.positive(x)) is True
assert ask(~Q.real(x), Q.commutative(x)) is None
assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False
assert ask(Q.negative(x) & Q.integer(x)) is None
assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True
assert ask(Q.real(x) | Q.integer(x)) is None
assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False
assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False
assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None
assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True
assert ask(Equivalent(Q.integer(x), Q.even(x))) is None
assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None
示例5: test_zero_0
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_zero_0():
z = Integer(0)
assert ask(Q.nonzero(z)) == False
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == True
assert ask(Q.rational(z)) == True
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == False
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == True
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == True
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例6: test_E
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_E():
z = S.Exp1
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
示例7: test_Rational_number
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_Rational_number():
r = Rational(3,4)
assert ask(Q.commutative(r)) == True
assert ask(Q.integer(r)) == False
assert ask(Q.rational(r)) == True
assert ask(Q.real(r)) == True
assert ask(Q.complex(r)) == True
assert ask(Q.irrational(r)) == False
assert ask(Q.imaginary(r)) == False
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
assert ask(Q.even(r)) == False
assert ask(Q.odd(r)) == False
assert ask(Q.bounded(r)) == True
assert ask(Q.infinitesimal(r)) == False
assert ask(Q.prime(r)) == False
assert ask(Q.composite(r)) == False
r = Rational(1,4)
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
r = Rational(5,4)
assert ask(Q.negative(r)) == False
assert ask(Q.positive(r)) == True
r = Rational(5,3)
assert ask(Q.positive(r)) == True
assert ask(Q.negative(r)) == False
r = Rational(-3,4)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
r = Rational(-1,4)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
r = Rational(-5,4)
assert ask(Q.negative(r)) == True
assert ask(Q.positive(r)) == False
r = Rational(-5,3)
assert ask(Q.positive(r)) == False
assert ask(Q.negative(r)) == True
示例8: test_nan
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_nan():
nan = S.NaN
assert ask(Q.commutative(nan)) == True
assert ask(Q.integer(nan)) == False
assert ask(Q.rational(nan)) == False
assert ask(Q.real(nan)) == False
assert ask(Q.extended_real(nan)) == False
assert ask(Q.complex(nan)) == False
assert ask(Q.irrational(nan)) == False
assert ask(Q.imaginary(nan)) == False
assert ask(Q.positive(nan)) == False
assert ask(Q.nonzero(nan)) == True
assert ask(Q.even(nan)) == False
assert ask(Q.odd(nan)) == False
assert ask(Q.bounded(nan)) == False
assert ask(Q.infinitesimal(nan)) == False
assert ask(Q.prime(nan)) == False
assert ask(Q.composite(nan)) == False
示例9: test_neg_infinity
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_neg_infinity():
mm = S.NegativeInfinity
assert ask(Q.commutative(mm)) == True
assert ask(Q.integer(mm)) == False
assert ask(Q.rational(mm)) == False
assert ask(Q.real(mm)) == False
assert ask(Q.extended_real(mm)) == True
assert ask(Q.complex(mm)) == False
assert ask(Q.irrational(mm)) == False
assert ask(Q.imaginary(mm)) == False
assert ask(Q.positive(mm)) == False
assert ask(Q.negative(mm)) == True
assert ask(Q.even(mm)) == False
assert ask(Q.odd(mm)) == False
assert ask(Q.bounded(mm)) == False
assert ask(Q.infinitesimal(mm)) == False
assert ask(Q.prime(mm)) == False
assert ask(Q.composite(mm)) == False
示例10: test_infinity
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_infinity():
oo = S.Infinity
assert ask(Q.commutative(oo)) == True
assert ask(Q.integer(oo)) == False
assert ask(Q.rational(oo)) == False
assert ask(Q.real(oo)) == False
assert ask(Q.extended_real(oo)) == True
assert ask(Q.complex(oo)) == False
assert ask(Q.irrational(oo)) == False
assert ask(Q.imaginary(oo)) == False
assert ask(Q.positive(oo)) == True
assert ask(Q.negative(oo)) == False
assert ask(Q.even(oo)) == False
assert ask(Q.odd(oo)) == False
assert ask(Q.bounded(oo)) == False
assert ask(Q.infinitesimal(oo)) == False
assert ask(Q.prime(oo)) == False
assert ask(Q.composite(oo)) == False
示例11: Mul
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def Mul(expr, assumptions):
"""
As long as there is at most only one noncommutative term:
Hermitian*Hermitian -> !Antihermitian
Hermitian*Antihermitian -> Antihermitian
Antihermitian*Antihermitian -> !Antihermitian
"""
if expr.is_number:
return AskImaginaryHandler._number(expr, assumptions)
nccount = 0
result = False
for arg in expr.args:
if ask(Q.antihermitian(arg), assumptions):
result = result ^ True
elif not ask(Q.hermitian(arg), assumptions):
break
if ask(~Q.commutative(arg), assumptions):
nccount += 1
if nccount > 1:
break
else:
return result
示例12: Basic
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def Basic(expr, assumptions):
for arg in expr.args:
if not ask(Q.commutative(arg), assumptions):
return False
return True
示例13: test_commutative
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_commutative():
"""By default objects are Q.commutative that is why it returns True
for both key=True and key=False"""
x, y = symbols('x,y')
assert ask(Q.commutative(x)) == True
assert ask(Q.commutative(x), ~Q.commutative(x)) == False
assert ask(Q.commutative(x), Q.complex(x)) == True
assert ask(Q.commutative(x), Q.imaginary(x)) == True
assert ask(Q.commutative(x), Q.real(x)) == True
assert ask(Q.commutative(x), Q.positive(x)) == True
assert ask(Q.commutative(x), ~Q.commutative(y)) == True
assert ask(Q.commutative(2*x)) == True
assert ask(Q.commutative(2*x), ~Q.commutative(x)) == False
assert ask(Q.commutative(x + 1)) == True
assert ask(Q.commutative(x + 1), ~Q.commutative(x)) == False
assert ask(Q.commutative(x**2)) == True
assert ask(Q.commutative(x**2), ~Q.commutative(x)) == False
assert ask(Q.commutative(log(x))) == True
示例14: test_pi
# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import commutative [as 别名]
def test_pi():
z = S.Pi
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = S.Pi + 1
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = 2*S.Pi
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = S.Pi ** 2
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False
z = (1+S.Pi) ** 2
assert ask(Q.commutative(z)) == True
assert ask(Q.integer(z)) == False
assert ask(Q.rational(z)) == False
assert ask(Q.real(z)) == True
assert ask(Q.complex(z)) == True
assert ask(Q.irrational(z)) == True
assert ask(Q.imaginary(z)) == False
assert ask(Q.positive(z)) == True
assert ask(Q.negative(z)) == False
assert ask(Q.even(z)) == False
assert ask(Q.odd(z)) == False
assert ask(Q.bounded(z)) == True
assert ask(Q.infinitesimal(z)) == False
assert ask(Q.prime(z)) == False
assert ask(Q.composite(z)) == False