当前位置: 首页>>代码示例>>Python>>正文


Python Q.bounded方法代码示例

本文整理汇总了Python中sympy.assumptions.Q.bounded方法的典型用法代码示例。如果您正苦于以下问题:Python Q.bounded方法的具体用法?Python Q.bounded怎么用?Python Q.bounded使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy.assumptions.Q的用法示例。


在下文中一共展示了Q.bounded方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_float_1

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_float_1():
    z = 1.0
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == True
    assert ask(Q.rational(z))         == True
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == True
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == True
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == True

    z = 7.2123
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == True
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == True
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
开发者ID:lazovich,项目名称:sympy,代码行数:36,代码来源:test_query.py

示例2: test_I

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_I():
    I = S.ImaginaryUnit
    z = I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == True
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = 1 + I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = I*(1+I)
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
开发者ID:lazovich,项目名称:sympy,代码行数:54,代码来源:test_query.py

示例3: Mul

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
    def Mul(expr, assumptions):
        """
        Return True if expr is bounded, False if not and None if unknown.

               TRUTH TABLE

              B   U     ?
                      s   /s
            +---+---+---+---+
         B  | B | U |   ?   |  legend:
            +---+---+---+---+    B  = Bounded
         U      | U | U | ? |    U  = Unbounded
                +---+---+---+    ?  = unknown boundedness
         ?          |   ?   |    s  = signed (hence nonzero)
                    +---+---+    /s = not signed

        """
        result = True
        for arg in expr.args:
            _bounded = ask(Q.bounded(arg), assumptions)
            if _bounded:
                continue
            elif _bounded is None:
                if result is None:
                    return None
                if ask(Q.nonzero(arg), assumptions) is None:
                    return None
                if result is not False:
                    result = None
            else:
                result = False
        return result
开发者ID:101man,项目名称:sympy,代码行数:34,代码来源:calculus.py

示例4: Pow

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
 def Pow(expr, assumptions):
     """
     Unbounded ** Whatever -> Unbounded
     Bounded ** Unbounded -> Unbounded if base > 1
     Bounded ** Unbounded -> Unbounded if base < 1
     """
     base_bounded = ask(Q.bounded(expr.base), assumptions)
     if not base_bounded:
         return False
     if ask(Q.bounded(expr.exp), assumptions):# and base_bounded:
         return True
     if expr.base.is_number:# and base_bounded and not exp_bounded:
         # We need to implement relations for this
         if abs(expr.base) > 1:
             return False
         return ask(~Q.negative(expr.exp), assumptions)
开发者ID:lazovich,项目名称:sympy,代码行数:18,代码来源:calculus.py

示例5: test_infinitesimal

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_infinitesimal():
    x, y = symbols('x,y')
    assert ask(Q.infinitesimal(x)) == None
    assert ask(Q.infinitesimal(x), Q.infinitesimal(x)) == True

    assert ask(Q.infinitesimal(2*x), Q.infinitesimal(x)) == True
    assert ask(Q.infinitesimal(x*y), Q.infinitesimal(x)) == None
    assert ask(Q.infinitesimal(x*y), Q.infinitesimal(x) & Q.infinitesimal(y)) == True
    assert ask(Q.infinitesimal(x*y), Q.infinitesimal(x) & Q.bounded(y)) == True

    assert ask(Q.infinitesimal(x**2), Q.infinitesimal(x)) == True
开发者ID:lazovich,项目名称:sympy,代码行数:13,代码来源:test_query.py

示例6: Mul

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
    def Mul(expr, assumptions):
        """
        Return True if expr is bounded, False if not and None if unknown.

        Truth Table:

        +---+---+---+--------+
        |   |   |   |        |
        |   | B | U |   ?    |
        |   |   |   |        |
        +---+---+---+---+----+
        |   |   |   |   |    |
        |   |   |   | s | /s |
        |   |   |   |   |    |
        +---+---+---+---+----+
        |   |   |   |        |
        | B | B | U |   ?    |
        |   |   |   |        |
        +---+---+---+---+----+
        |   |   |   |   |    |
        | U |   | U | U | ?  |
        |   |   |   |   |    |
        +---+---+---+---+----+
        |   |   |   |        |
        | ? |   |   |   ?    |
        |   |   |   |        |
        +---+---+---+---+----+

            * B = Bounded

            * U = Unbounded

            * ? = unknown boundedness

            * s = signed (hence nonzero)

            * /s = not signed

        """
        result = True
        for arg in expr.args:
            _bounded = ask(Q.bounded(arg), assumptions)
            if _bounded:
                continue
            elif _bounded is None:
                if result is None:
                    return None
                if ask(Q.nonzero(arg), assumptions) is None:
                    return None
                if result is not False:
                    result = None
            else:
                result = False
        return result
开发者ID:ChaliZhg,项目名称:sympy,代码行数:56,代码来源:calculus.py

示例7: Pow

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
 def Pow(expr, assumptions):
     """
     Unbounded ** NonZero -> Unbounded
     Bounded ** Bounded -> Bounded
     Abs()<=1 ** Positive -> Bounded
     Abs()>=1 ** Negative -> Bounded
     Otherwise unknown
     """
     base_bounded = ask(Q.bounded(expr.base), assumptions)
     exp_bounded = ask(Q.bounded(expr.exp), assumptions)
     if base_bounded is None and exp_bounded is None:  # Common Case
         return None
     if base_bounded is False and ask(Q.nonzero(expr.exp), assumptions):
         return False
     if base_bounded and exp_bounded:
         return True
     if (abs(expr.base) <= 1) == True and ask(Q.positive(expr.exp), assumptions):
         return True
     if (abs(expr.base) >= 1) == True and ask(Q.negative(expr.exp), assumptions):
         return True
     if (abs(expr.base) >= 1) == True and exp_bounded is False:
         return False
     return None
开发者ID:ChaliZhg,项目名称:sympy,代码行数:25,代码来源:calculus.py

示例8: Add

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
 def Add(expr, assumptions):
     """
     Bounded + Bounded     -> Bounded
     Unbounded + Bounded   -> Unbounded
     Unbounded + Unbounded -> ?
     """
     result = True
     for arg in expr.args:
         _bounded = ask(Q.bounded(arg), assumptions)
         if _bounded: continue
         elif _bounded is None: return
         elif _bounded is False:
             if result: result = False
             else: return
     return result
开发者ID:lazovich,项目名称:sympy,代码行数:17,代码来源:calculus.py

示例9: Add

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
    def Add(expr, assumptions):
        """
        Return True if expr is bounded, False if not and None if unknown.

               TRUTH TABLE

              B    U     ?
                 + - x + - x
            +---+-----+-----+
        B   | B |  U  |? ? ?|  legend:
            +---+-----+-----+    B  = Bounded
          +     |U ? ?|U ? ?|    U  = Unbounded
        U -     |? U ?|? U ?|    ?  = unknown boundedness
          x     |? ? ?|? ? ?|    +  = positive sign
                +-----+--+--+    -  = negative sign
        ?             |? ? ?|    x  = sign unknown
                      +--+--+


        All Bounded -> True
        1 Unbounded and the rest Bounded -> False
        >1 Unbounded, all with same known sign -> False
        Any Unknown and unknown sign -> None
        Else -> None

        When the signs are not the same you can have an undefined
        result as in oo - oo, hence 'bounded' is also undefined.
        """

        sign = -1 # sign of unknown or unbounded
        result = True
        for arg in expr.args:
            _bounded = ask(Q.bounded(arg), assumptions)
            if _bounded:
                continue
            s = ask(Q.positive(arg), assumptions)
            # if there has been more than one sign or if the sign of this arg
            # is None and Bounded is None or there was already
            # an unknown sign, return None
            if sign != -1 and s != sign or \
               s == None and (s == _bounded or s == sign):
                return None
            else:
                sign = s
            # once False, do not change
            if result is not False:
                result = _bounded
        return result
开发者ID:101man,项目名称:sympy,代码行数:50,代码来源:calculus.py

示例10: Add

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
    def Add(expr, assumptions):
        """
        Return True if expr is bounded, False if not and None if unknown.

               TRUTH TABLE

              B    U     ?
                 + - x + - x
            +---+-----+-----+
        B   | B |  U  |? ? ?|  legend:
            +---+-----+-----+    B  = Bounded
          +     |U ? ?|U ? ?|    U  = Unbounded
        U -     |? U ?|? U ?|    ?  = unknown boundedness
          x     |? ? ?|? ? ?|    +  = positive sign
                +-----+--+--+    -  = negative sign
        ?             |? ? ?|    x  = sign unknown
                      +--+--+


        All Bounded -> True
        Any Unbounded and all same sign -> False
        Any Unknown and unknown sign -> None
        Else -> None

        When the signs are not the same you can have an undefined
        (hence bounded undefined) result as in oo - oo
        """

        result = True
        sign = -1 # not assigned yet
        for arg in expr.args:
            _bounded = ask(Q.bounded(arg), assumptions)
            if _bounded:
                continue
            if result is None and _bounded is None and sign is None:
                return None
            if result is not False:
                result = _bounded
            pos = ask(Q.positive(arg), assumptions)
            if sign == -1:
                sign = pos
                continue
            if sign != pos:
                return None
            if sign is None and pos is None:
                return None
        return result
开发者ID:ArchKaine,项目名称:sympy,代码行数:49,代码来源:calculus.py

示例11: test_zero_0

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_zero_0():
    z = Integer(0)
    assert ask(Q.nonzero(z))          == False
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == True
    assert ask(Q.rational(z))         == True
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == True
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == True
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
开发者ID:lazovich,项目名称:sympy,代码行数:19,代码来源:test_query.py

示例12: test_E

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_E():
    z = S.Exp1
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == True
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == True
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
开发者ID:lazovich,项目名称:sympy,代码行数:19,代码来源:test_query.py

示例13: test_Rational_number

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_Rational_number():
    r = Rational(3,4)
    assert ask(Q.commutative(r))      == True
    assert ask(Q.integer(r))          == False
    assert ask(Q.rational(r))         == True
    assert ask(Q.real(r))             == True
    assert ask(Q.complex(r))          == True
    assert ask(Q.irrational(r))       == False
    assert ask(Q.imaginary(r))        == False
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False
    assert ask(Q.even(r))             == False
    assert ask(Q.odd(r))              == False
    assert ask(Q.bounded(r))          == True
    assert ask(Q.infinitesimal(r))    == False
    assert ask(Q.prime(r))            == False
    assert ask(Q.composite(r))        == False

    r = Rational(1,4)
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False

    r = Rational(5,4)
    assert ask(Q.negative(r))         == False
    assert ask(Q.positive(r))         == True

    r = Rational(5,3)
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False

    r = Rational(-3,4)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True

    r = Rational(-1,4)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True

    r = Rational(-5,4)
    assert ask(Q.negative(r))         == True
    assert ask(Q.positive(r))         == False

    r = Rational(-5,3)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True
开发者ID:lazovich,项目名称:sympy,代码行数:47,代码来源:test_query.py

示例14: test_infinity

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_infinity():
    oo = S.Infinity
    assert ask(Q.commutative(oo))     == True
    assert ask(Q.integer(oo))         == False
    assert ask(Q.rational(oo))        == False
    assert ask(Q.real(oo))            == False
    assert ask(Q.extended_real(oo))   == True
    assert ask(Q.complex(oo))         == False
    assert ask(Q.irrational(oo))      == False
    assert ask(Q.imaginary(oo))       == False
    assert ask(Q.positive(oo))        == True
    assert ask(Q.negative(oo))        == False
    assert ask(Q.even(oo))            == False
    assert ask(Q.odd(oo))             == False
    assert ask(Q.bounded(oo))         == False
    assert ask(Q.infinitesimal(oo))   == False
    assert ask(Q.prime(oo))           == False
    assert ask(Q.composite(oo))       == False
开发者ID:lazovich,项目名称:sympy,代码行数:20,代码来源:test_query.py

示例15: test_neg_infinity

# 需要导入模块: from sympy.assumptions import Q [as 别名]
# 或者: from sympy.assumptions.Q import bounded [as 别名]
def test_neg_infinity():
    mm = S.NegativeInfinity
    assert ask(Q.commutative(mm))    == True
    assert ask(Q.integer(mm))        == False
    assert ask(Q.rational(mm))       == False
    assert ask(Q.real(mm))           == False
    assert ask(Q.extended_real(mm))  == True
    assert ask(Q.complex(mm))        == False
    assert ask(Q.irrational(mm))     == False
    assert ask(Q.imaginary(mm))      == False
    assert ask(Q.positive(mm))       == False
    assert ask(Q.negative(mm))       == True
    assert ask(Q.even(mm))           == False
    assert ask(Q.odd(mm))            == False
    assert ask(Q.bounded(mm))        == False
    assert ask(Q.infinitesimal(mm))  == False
    assert ask(Q.prime(mm))          == False
    assert ask(Q.composite(mm))      == False
开发者ID:lazovich,项目名称:sympy,代码行数:20,代码来源:test_query.py


注:本文中的sympy.assumptions.Q.bounded方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。