当前位置: 首页>>代码示例>>Python>>正文


Python SGDClassifier.densify方法代码示例

本文整理汇总了Python中sklearn.linear_model.SGDClassifier.densify方法的典型用法代码示例。如果您正苦于以下问题:Python SGDClassifier.densify方法的具体用法?Python SGDClassifier.densify怎么用?Python SGDClassifier.densify使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.SGDClassifier的用法示例。


在下文中一共展示了SGDClassifier.densify方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_custom_one_vs_all

# 需要导入模块: from sklearn.linear_model import SGDClassifier [as 别名]
# 或者: from sklearn.linear_model.SGDClassifier import densify [as 别名]
def train_custom_one_vs_all(X_train,X_test,Y_train,topk):

    #convert matrix to row for efficient splicing
    Y_train = Y_train.tocsc()
    tag_classifiers = []
    num_training,numclasses = Y_train.shape
    num_test_examples = X_test.shape[0]


    # hold a vector mxk, containing top k prediction classes for each example, maintain m heaps for that
    num_examples = X_test.shape[0]
    num_classes = len(tag_classifiers)
    topk_class_distances = []
    for i in xrange(num_examples):
        heap = []
        topk_class_distances += [heap]
    

    for j in xrange(numclasses):
        # train on each class label for all the training examples
        y = numpy.ravel(Y_train.getcol(j).todense());

        clf =  SGDClassifier(loss='hinge',penalty='l2',alpha=0.0001,fit_intercept=True,n_iter = 10,shuffle=True,n_jobs=4,learning_rate='optimal')
    
        clf.fit(X_train,y);
        print "Trained for class",j
        # get the decision for all test examples
        decision = clf.densify().decision_function(X_test)
        # for each test example add its decision value to the heap of top k decision values
        for i in xrange(num_test_examples):
            h = topk_class_distances[i]
            if len(h) < topk: heapq.heappush(h,(decision[i],j))
            else:             heapq.heappushpop(h,(decision[i],j))
        print "Predicted for class",j

    #clean the decision values and store the class labels
    class_label_indices = []
    for i in xrange(num_examples):
        topk_labels = [label for dist,label in topk_class_distances[i]]
        class_label_indices += [topk_labels]

    return class_label_indices
开发者ID:adirastogi,项目名称:so_project,代码行数:44,代码来源:multi_class_classifier_sgd.py


注:本文中的sklearn.linear_model.SGDClassifier.densify方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。