当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestRegressor.set_params方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestRegressor.set_params方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestRegressor.set_params方法的具体用法?Python RandomForestRegressor.set_params怎么用?Python RandomForestRegressor.set_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestRegressor的用法示例。


在下文中一共展示了RandomForestRegressor.set_params方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_random_forest

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
    def _create_random_forest(self, current_param={}):
        combined_param = dict(self.params, **current_param)
        clf = RandomForestRegressor()
        clf.set_params(**combined_param)
        clf = clf.fit(self.Xtr, self.Ytr)

        return clf
开发者ID:CS178,项目名称:KaggleRandomForestTreeRegressor,代码行数:9,代码来源:KaggleRandomForestTreeRegressor.py

示例2: model_rf_cv

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
def model_rf_cv(train , test):
    train_x , train_y = train[0] , train[1]
    cv = cross_validation.KFold(len(train_x) , n_folds = 5)
    results = []
    rf = RandomForestRegressor()
    rf.set_params(**Params.rf_reg_params)
    for traincv , testcv in cv:
        print traincv , testcv
        probas = rf.fit(train_x[traincv] , train_y['gap'][traincv].values).predict(train_x[testcv])
        results.append(Util.score(train_y.loc[testcv , y_fea_names].values , probas))
    print results
    print np.mean(results)
开发者ID:gumaojie,项目名称:citydata,代码行数:14,代码来源:model.py

示例3: model_rf

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
def model_rf(train , test , flag):
    train_x , train_y = train[0] , train[1]
    test_x , test_y = test[0] , test[1]
    rf = RandomForestRegressor()
    rf.set_params(**Params.rf_reg_params)
    print "start training"
    rf.fit(train_x , train_y['gap'].values)
    if flag == 'online':
        prd = rf.predict(test_x)
        prd = postprocess(train , test_y.values , prd)
        Util.submit(test_y.values , prd)
    elif flag == 'offline':
        prd = rf.predict(test_x)
        prd = postprocess(train , test_y.values , prd)
        print 'test : ' , Util.score(test_y.values , prd)
        prd = rf.predict(train_x)
        print 'train : ' , Util.score(train_y.values , prd)
开发者ID:gumaojie,项目名称:citydata,代码行数:19,代码来源:model.py

示例4: model_rf

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
def model_rf(train , test , flag):
    train_x , train_y = train[0] , train[1]
    test_x , test_y = test[0] , test[1]
    if os.path.exists(configs['rf_model']):
        print "model exists"
        rf = joblib.load(configs['rf_model'])
    else:
        rf = RandomForestRegressor()
        rf.set_params(**Params.rf_reg_params)
        print "start training"
        rf.fit(train_x , train_y[3].values)
        joblib.dump(rf , configs['rf_model'] , compress=3)
    if flag == 'online':
        prd = rf.predict(test_x)
        #prd = postprocess(train , test_y.values , prd)
        Util.submit(test_y.values , prd)
    elif flag == 'offline':
        prd = rf.predict(test_x)
        #prd = postprocess(train , test_y.values , prd)
        print 'test : ', Util.score2(test_y.values , prd)
开发者ID:gumaojie,项目名称:citydata,代码行数:22,代码来源:model3.py

示例5: __init__

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
class Model:
    def __init__(self, obj, kfold=3):
        self.kfold = kfold
        self.obj = obj
        self.best_params_ = [[0 for i in range(featureset_n)] for j in range(model_n)]
        self.predicted = [[0 for i in range(featureset_n)] for j in range(model_n)]
        self.clf = [[0 for i in range(featureset_n)] for j in range(model_n)]
        self.test_predicted = [[0 for i in range(featureset_n)] for j in range(model_n)]
        self.parameters = [0 for i in range(model_n)]
        self.featureset_master = dict({0:"raw", 1:"tfidf", 2:"pca", 3:"infra_holiday"})
        self.clf_master = dict({0:"RF", 1:"KNN", 2:"Elastic", 3:"GBR", 4:"ETR"})


    def set_feature(self):
        infra_cols = utility.cols_extractcols(data_train, ["infra"],["PCA", "tfidf"])
        weather_cols = utility.cols_extractcols(data_train, ["wea"])
        tfidf_infra_cols = utility.cols_extractcols(data_train, ["tfidf", "infra"])
        tfidf_snslocation_cols = utility.cols_extractcols(data_train, ["tfidf", "snslocation"])
        pca_infra_cols = utility.cols_extractcols(data_train, ["PCA", "infra"])
        pca_clim_cols = utility.cols_extractcols(data_train, ["PCA", "clim"])
        pca_snsraw_cols = utility.cols_extractcols(data_train, ["PCA", "snsraw"])

        loc_cols = utility.cols_extractcols(data_train, ["loc_"])
        jpy_cols = utility.cols_extractcols(data_train, ["JPY"])
        season_cols = utility.cols_extractcols(data_train,["season"])
        snslocation_cols = utility.cols_extractcols(data_train, ["snslocation"], ["tfidf", "PCA"])
        clim_cols = utility.cols_extractcols(data_train, ["clim"], ["tfidf", "PCA"])

        snsraw_cols = utility.cols_extractcols(data_train, ["twitter"], ["PCA"])
        holiday_cols = ["is_holiday", "is_weekend", "is_dayoff", "is_dayoff_mean"]
        holiday_cols_abroad = ["is_holiday_abroad", "is_weekend", "is_dayoff_abroad", "is_dayoff_mean_abroad"]

        if self.obj == "total":
            self.features = [0] * featureset_n
            self.features[0] = infra_cols + loc_cols + clim_cols + holiday_cols + snslocation_cols + ["snsfeature"]
            self.features[1] = tfidf_infra_snslocation_cols + holiday_cols
            self.features[2] = pca_infra_clim_snsraw_cols + holiday_cols
            self.features[3] = infra_cols + holiday_cols + ["snsfeature"]

        elif self.obj == "inbound":
            self.features = [0] * featureset_n
            self.features[0] = infra_cols + loc_cols + clim_cols + jpy_cols + holiday_cols_abroad + ["snsfeature"]
            self.features[1] = tfidf_infra_cols + holiday_cols_abroad
            self.features[2] = pca_infra_cols + pca_clim_cols + holiday_cols_abroad
            self.features[3] = infra_cols + holiday_cols_abroad + ["snsfeature"]

        elif self.obj == "japan":
            self.features = [0] * featureset_n
            self.features[0] = infra_cols + loc_cols + clim_cols + holiday_cols + ["snsfeature"]
            self.features[1] = tfidf_infra_cols +  holiday_cols
            self.features[2] = pca_infra_cols + pca_clim_cols + pca_snsraw_cols + holiday_cols
            self.features[3] = infra_cols + holiday_cols+ ["snsfeature"]

    def setmodel_stage1(self):
        self.clf[0] = [RandomForestRegressor(random_state=71)] * featureset_n
        self.parameters[0] = {'n_estimators':np.arange(50, 450, 100),"max_features":np.arange(3,12,3),"max_depth":np.arange(7,13,3)}

        self.clf[1] = [KNeighborsRegressor()] * featureset_n
        self.parameters[1] = {'n_neighbors':np.arange(4,15,2), "weights":["uniform", "distance"]}

        self.clf[2] = [linear_model.ElasticNet(max_iter=10000)] *  featureset_n
        self.parameters[2] = {'alpha': np.linspace(0.01, 1500, num=10), "l1_ratio": np.linspace(0.01,1,5)}

        self.clf[3] = [GradientBoostingRegressor(random_state=71)] * featureset_n
        self.parameters[3] = {'n_estimators':np.arange(200, 400, 100),"max_features":np.arange(6,12,3),"max_depth":np.arange(7,13,3)}

        self.clf[4] = [ExtraTreesRegressor(random_state=71)] * featureset_n
        self.parameters[4] = {'n_estimators':np.arange(100, 400, 100),"max_features":np.arange(6,12,3),"max_depth":np.arange(4,13,3)}

    def parametersearch_stage1(self):
        cv = cross_validation.KFold(len(data_train), n_folds=self.kfold, shuffle=True, random_state=1)
        for i in range(model_n):
            for j in range(featureset_n):
                grid = grid_search.GridSearchCV(self.clf[i][j], self.parameters[i], cv=cv, n_jobs=1, scoring="mean_absolute_error")
                if self.clf_master[i] == "KNN":
                    scaler = preprocessing.StandardScaler().fit(data_train[self.features[j]])
                    tmp = pd.DataFrame(scaler.transform(data_train[self.features[j]]), columns=data_train[self.features[j]].columns)
                    grid.fit(tmp, data_train[self.obj])
                    print "{0}_{1} params: {2} score:{3}".format(self.clf_master[i], self.featureset_master[j], grid.best_params_, grid.best_score_)
                else:
                    grid.fit(data_train[self.features[j]], data_train[self.obj])
                    print "{0}_{1} params: {2} score:{3}".format(self.clf_master[i], self.featureset_master[j], grid.best_params_, grid.best_score_)
                self.best_params_[i][j] = grid.best_params_

    def predict_stage1(self):
        for i in range(model_n):
            for j in range(featureset_n):
                self.clf[i][j].set_params(**self.best_params_[i][j])
                cv = cross_validation.KFold(len(data_train), n_folds=self.kfold, shuffle=True, random_state=71)
                if self.clf_master[i] == "KNN":
                    scaler = preprocessing.StandardScaler().fit(data_train[self.features[j]])
                    tmp = pd.DataFrame(scaler.transform(data_train[self.features[j]]), columns=data_train[self.features[j]].columns)
                    self.predicted[i][j] = cross_validation.cross_val_predict(self.clf[i][j], tmp, data_train[self.obj], cv=cv)
                    self.clf[i][j].fit(tmp, data_train[self.obj])
                    tmp_test = pd.DataFrame(scaler.transform(data_test[self.features[j]]), columns=data_test[self.features[j]].columns)
                    self.test_predicted[i][j] = self.clf[i][j].predict(tmp_test)

                else:
                    self.predicted[i][j] = cross_validation.cross_val_predict(self.clf[i][j], data_train[self.features[j]], data_train[self.obj], cv=cv)
                    self.clf[i][j].fit(data_train[self.features[j]], data_train[self.obj])
#.........这里部分代码省略.........
开发者ID:sanukitest,项目名称:dummy,代码行数:103,代码来源:modeling.py

示例6: predict

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
    clf.fit(X, y)

def predict(examples):
    X = [represent(example) for example in examples]
    y = clf.predict(X)
    return y

import math
from sklearn.metrics import mean_squared_error

def rmse(y_true, y_pred):
    mse = mean_squared_error(y_true, y_pred)
    return math.sqrt(mse)

from sklearn.cross_validation import cross_val_score

def validate(examples):
    X = [represent(example) for example in examples]
    y = [label(example) for example in examples]
    scores = cross_val_score(clf, X, y, cv=2, score_func=rmse)
    return scores

if __name__ == "__main__":
    import music
    train_examples = music.load_examples('data/train.pkl')
    import sys
    if len(sys.argv) > 1:
        clf.set_params(n_estimators = int(sys.argv[1]))
    scores = validate(train_examples)
    print "RMSE: %0.6f (+/- %0.6f)" % (scores.mean(), scores.std()/2)
开发者ID:dell-zhang,项目名称:zmusic_code,代码行数:32,代码来源:model.py

示例7: rfFit

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
def rfFit(X, y):
    clf = RandomForestRegressor(n_estimators=forestSize, n_jobs=8)
    clf = clf.fit(X, y)
    clf.set_params(n_jobs = 1)
    return clf
开发者ID:mmcdermo,项目名称:142-galaxy,代码行数:7,代码来源:structureForest.py

示例8: str

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
    ,{ 'fit' : svrFit, 'predict': scaledPredict, 'scaled': True, 'idx0': 3, 'idx1': 4, 'ratio': svmRatio }
    ,{ 'fit' : svrFit, 'predict': scaledPredict, 'scaled': True, 'idx0': 4, 'idx1': 5, 'ratio': svmRatio }
    ,{ 'fit' : svrFit, 'predict': scaledPredict, 'scaled': True, 'idx0': 6, 'idx1': 7, 'ratio': svmRatio }
]

#models2 = combine.combineTrain(X_test, y_test, models)

print "Training random forest..."
forestSize = 30
print "\t# Examples: \t\t" + str(len(X_train)) 
print "\tForest Size: \t\t" + str(forestSize)
start = time.time()
clf = RandomForestRegressor(n_estimators=forestSize, n_jobs=8)
clf = clf.fit(X_train, y_train)
print "\tTraining Complete" 
print "\tTime: \t\t" + str(round(time.time() - start, 1)) + "s"

#Reset n_jobs to 1 because multicore evaluation is apparently hard
params = clf.get_params()
clf.set_params(n_jobs = 1)

print "\tRMSE: \t\t" + str(rmse(X_test, y_test, clf.predict, True))
#results = combine.combineTest(X_test, y_test, clf, models)



#def subPredict(X):
#    return combine.combinePredict(X, clf, models)
submission(clf.predict, filters, pca.transform)

开发者ID:mmcdermo,项目名称:142-galaxy,代码行数:31,代码来源:structureForest.py

示例9: dict

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
    ##############################################################
    scores = dict()
    skf = cross_validation.StratifiedKFold(Y, n_folds=3)
    for train_index, test_index in skf:
        X1, X2 = X[train_index], X[test_index]
        Y1, Y2 = Y[train_index], Y[test_index]
        
        # predict with SVR
        svr = SVR()
        svr.set_params(**pickle.load(open("svr.p", "rb" )))
        svr.fit(X1, Y1)
        Y_svr = svr.predict(X2)

        # predict with RF
        rfr = RandomForestRegressor(n_estimators = 1000)
        rfr.set_params(**pickle.load(open("rfr.p", "rb" )))
        rfr.fit(X1, Y1)
        Y_rfr = rfr.predict(X2)
    
        # predict with GBT
        gbr = GradientBoostingRegressor(n_estimators=3000)
        gbr.set_params(**pickle.load(open("gbr.p", "rb" )))
        gbr.fit(X1, Y1)
        Y_gbr = gbr.predict(X2)
        
        # stacking
        for alpha in np.logspace(-10, 10, 21, base=2):
            for beta in np.logspace(-10, 10, 21, base=2):
                y_pred = Y_svr + alpha * Y_rfr + beta * Y_gbr
                y_rank = convertScore(y_pred, 
                           [0.0, 0.0761961015948, 0.221500295334, 0.392498523331, 1.0])
开发者ID:Kenji-H,项目名称:Search_Results_Relevance,代码行数:33,代码来源:model_stacking.py

示例10: GridSearchCV

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import set_params [as 别名]
    RF_model = GridSearchCV(RF_est, params)
    RF_model.fit(X,y)
    print('Best {}'.format(RF_model.best_params_))


    print('Performing grid search on GBR')
    n_features = X.shape[1]
    params = {'max_features':['auto','sqrt','log2'],
              'max_depth':[2, 3]}
    GBR_model = GridSearchCV(GBR_est, params)
    GBR_model.fit(X,y)
    print('Best {}'.format(GBR_model.best_params_))
else:
    Lin_model = Lin_est.set_params(alpha=100.0)
    SVR_model = svr_est.set_params(C=1.0)
    RF_model = RF_est.set_params(max_features='auto')
    GBR_model = GBR_est.set_params(max_features='auto',
                                    max_depth=3)


#%% Specify set of models to test
model_set = [('Null',LCM.rand_pick_mod()),
            ('Lin', Lin_model),
            ('Lin_SVR',SVR_model),
            ('GBR',GBR_model),
            ('RF', RF_model)]
# model_set = [('Null',LCM.rand_pick_mod()),
#             ('Lin', Lin_model),
#              ('RF', RF_model)]

leg_titles = {'Null':'Random\nPicking',
开发者ID:jmmcfarl,项目名称:loan-picker,代码行数:33,代码来源:make_modeling_figs.py


注:本文中的sklearn.ensemble.RandomForestRegressor.set_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。