当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestRegressor.score方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestRegressor.score方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestRegressor.score方法的具体用法?Python RandomForestRegressor.score怎么用?Python RandomForestRegressor.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestRegressor的用法示例。


在下文中一共展示了RandomForestRegressor.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_boston

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def test_boston():
    """Check consistency on dataset boston house prices."""
    for c in ("mse",):
        # Random forest
        clf = RandomForestRegressor(n_estimators=5, criterion=c,
                                    random_state=1)
        clf.fit(boston.data, boston.target)
        score = clf.score(boston.data, boston.target)
        assert score < 3, ("Failed with max_features=None, "
                           "criterion %s and score = %f" % (c, score))

        clf = RandomForestRegressor(n_estimators=5, criterion=c,
                                    max_features=6, random_state=1)
        clf.fit(boston.data, boston.target)
        score = clf.score(boston.data, boston.target)
        assert score < 3, ("Failed with max_features=None, "
                           "criterion %s and score = %f" % (c, score))

        # Extra-trees
        clf = ExtraTreesRegressor(n_estimators=5, criterion=c, random_state=1)
        clf.fit(boston.data, boston.target)
        score = clf.score(boston.data, boston.target)
        assert score < 3, ("Failed with max_features=None, "
                           "criterion %s and score = %f" % (c, score))

        clf = ExtraTreesRegressor(n_estimators=5, criterion=c, max_features=6,
                                  random_state=1)
        clf.fit(boston.data, boston.target)
        score = clf.score(boston.data, boston.target)
        assert score < 3, ("Failed with max_features=None, "
                           "criterion %s and score = %f" % (c, score))
开发者ID:DaveYuan,项目名称:recommendersystem,代码行数:33,代码来源:test_forest.py

示例2: random_forest_regressor

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def random_forest_regressor(train_x, train_y, pred_x, review_id, v_curve=False, l_curve=False, get_model=True):
    """
    :param train_x: train
    :param train_y: text
    :param pred_x: test set to predict
    :param review_id: takes in a review id
    :param v_curve: run the code for validation curve
    :param l_curve: run the code for learning curve
    :param get_model: run the code
    :return:the predicted values,learning curve, validation curve
    """
    rf = RandomForestRegressor(n_estimators=20,criterion='mse',max_features='auto', max_depth=10)
    if get_model:
        print "Fitting RF..."
        rf.fit(train_x, np.log(train_y+1))
        print rf.score(train_x, np.log(train_y+1))
        rf_pred = np.exp(rf.predict(pred_x))-1.0
        Votes = rf_pred[:,np.newaxis]
        Id = np.array(review_id)[:,np.newaxis]
        submission_rf = np.concatenate((Id,Votes),axis=1)
        # create submission csv for Kaggle
        np.savetxt("submission_rf.csv", submission_rf,header="Id,Votes", delimiter=',',fmt="%s, %0.2f", comments='')
    # plot validation and learning curves
    if v_curve:
        train_y = np.log(train_y+1.0)
        plot_validation_curve(RandomForestRegressor(), "Random Forest: Validation Curve(No: of trees)", train_x,train_y,'n_estimators',[5,10,20,50,100])
    if l_curve:
        train_y = np.log(train_y+1.0)
        plot_learning_curve(RandomForestRegressor(), "Random Forest: Learning Curve", train_x,train_y)
开发者ID:rachanbassi,项目名称:yelp_kaggle_project,代码行数:31,代码来源:algorithms.py

示例3: dummie_columns_random_forest

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def dummie_columns_random_forest(train, test):
    from sklearn.ensemble import RandomForestRegressor
    print "-- {} --".format("Random Forest Regression using all but remarks")
    predicting_columns = list(train._get_numeric_data().columns.values)
    predicting_columns.remove("LISTPRICE")
    predicting_columns.remove("SOLDPRICE")
    predicting_columns.remove("SQFT")
    rf = RandomForestRegressor(
        n_estimators=300, n_jobs=-1)
    rf.fit(train[predicting_columns], train["SOLDPRICE"])
    score = rf.score(test[predicting_columns], test["SOLDPRICE"])
    predictions = rf.predict(test[predicting_columns])
    sample_predictions(test, predictions)
    # print "-- Feature Importance --"
    # for x in range(len(rf.feature_importances_)):
    #    print predicting_columns[x], rf.feature_importances_[x]
    """
    feature_importance = rf.feature_importances_
    # make importances relative to max importance
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    plt.subplot(1, 2, 2)
    plt.barh(pos, feature_importance[sorted_idx], align='center')
    plt.yticks(pos, test[predicting_columns].columns.values[sorted_idx], fontsize=6)
    plt.xlabel('Relative Importance')
    plt.title('Variable Importance')
    plt.show()
    """
    print "Accuracy: {}\n".format(score)
    return score, predictions
开发者ID:CurleySamuel,项目名称:Thesis,代码行数:33,代码来源:first_pass.py

示例4: random_forest_regressor

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def random_forest_regressor(df):
    """
    INPUT: Pandas dataframe
    OUTPUT: R^2 and Mean Absolute Error performance metrics, feature importances
    """

    y = df.pop("price").values
    X = df.values
    feature_names = df.columns
    xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=5)

    clf = RandomForestRegressor()
    clf.fit(xtrain, ytrain)
    score = clf.score(xtest, ytest)
    feat_imps = clf.feature_importances_
    ypredict = clf.predict(xtest)
    mae = np.mean(np.absolute(ytest - ypredict))
    mae_percent = np.mean(np.absolute(ytest - ypredict) / ytest)
    return (
        "R^2 is ",
        score,
        "MAE is ",
        mae,
        "MAE percent is ",
        mae_percent,
        "Feature Importances are ",
        zip(feature_names, feat_imps),
    )
开发者ID:nhu2000,项目名称:PriceMyRental,代码行数:30,代码来源:models.py

示例5: random_forest

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def random_forest(X_train, y_train, y_test, X_test, num_trees=100):
	model = RandomForestRegressor(n_estimators=num_trees, oob_score=True)
	model.fit(X_train, y_train)
	prediction = model.predict(X_test)
	mean_squared_error = mse(y_test, model.predict(X_test))
	r2 = model.score(X_test, y_test)
	return (mean_squared_error, r2)
开发者ID:khanzlik,项目名称:RatioClothing-Project,代码行数:9,代码来源:new_models.py

示例6: train_model

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def train_model(X_train, X_test, y_train, y_test):
	rf_model = RandomForestRegressor(max_depth=2, random_state=0)
	rf_model.fit(X_train,y_train)
	print (rf_model.score(X_test,y_test))
	output = pd.DataFrame({'actual':y_test['lag_idle_day'],'pred':rf_model.predict(X_test)})
	print (output)
	return rf_model, output
开发者ID:yennanliu,项目名称:analysis,代码行数:9,代码来源:run_zone_itime_ML_dev.py

示例7: cross_val

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def cross_val(seq, ft):
    n_folds = 10
    X, y = load_train_data(seq, ft)

    print('%d-fold cross validation. Dataset: %d samples, %d features' % (n_folds, X.shape[0], X.shape[1]))

    kf = KFold(len(y), n_folds=n_folds)
    n_est = range(30, 110, 20)

    results = []
    for n_estimators in n_est:
        scores = []
        for i, (train, test) in enumerate(kf):
            rf = RandomForestRegressor(n_estimators=n_estimators, n_jobs=mp.cpu_count())
            # the (default) score for each regression tree in the ensemble is regression
            # r2 determination coefficient (e.g., how much variance in y is explained
            # by the model)
            # https://www.khanacademy.org/math/probability/regression/regression-correlation/v/r-squared-or-coefficient-of-determination
            rf.fit(X[train], y[train])

            if False:
                y_pred = rf.predict(X[test])
                score = mean_squared_error(y_pred, y[test])
            else:
                score = rf.score(X[test], y[test])
            scores.append(score)
        scores = np.array(scores)
        print("n_estimators=%d; accuracy (R^2 score): %0.2f (+/- %0.2f)" % (n_estimators, scores.mean(), scores.std() * 2))
        results.append([seq, ft, X.shape[0], n_estimators, scores.mean(), scores.std()*2])
    return results
开发者ID:alexkreimer,项目名称:monos,代码行数:32,代码来源:fit.py

示例8: rf_regressor

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
	def rf_regressor(self):
		X = X.toarray() # Convert X from sparse to array
		X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2)

		model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=42)
		model.fit(X_train, y_train)
		return model.score(X_test, y_test).round(2)
开发者ID:edwood1,项目名称:yelp-boston,代码行数:9,代码来源:preprocess_predict.py

示例9: regression

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def regression(X_train, y_train, X_test, y_test):
    """
Train the regressor from Scikit-Learn.
"""
    # Random forest regressor w/ param optimization
    params = {'n_estimators':1000, 'criterion':'mse', 'max_depth':20, 'min_samples_split':1, #'estimators':400, depth:20
              'min_samples_leaf':1, 'max_features':2, 'bootstrap':True, 'oob_score':False, #'max_features':'log2'
              'n_jobs':32, 'random_state':0, 'verbose':0, 'min_density':None, 'max_leaf_nodes':None}
    if config.DEBUG: params['verbose'] = 1

    regr = RandomForestRegressor(**params)

    # Train the model using the training sets
    regr.fit(X_train, y_train)
    return regr

    # Plot the resutls
    save_semeval_data.plot_results(regr, params, X_test, y_test, feature_names)

    if config.DEBUG:
        # Show the mean squared error
        print("Residual sum of squares: %.2f" % np.mean((regr.predict(X_test) - y_test) ** 2))
        # Explained variance score: 1 is perfect prediction
        print('Variance score: %.2f' % regr.score(X_test, y_test))
    
    return regr
开发者ID:BinbinBian,项目名称:semeval-relatedness,代码行数:28,代码来源:semeval_task1.py

示例10: test_run

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def test_run():	
	data1 = os.path.join("data", "data3.csv")
	dataset1 = pd.read_csv(data1)
	number = preprocessing.LabelEncoder()
	dataset1.apply(number.fit_transform)
	# print dataset1.ix[1:5]
	dataset = dataset1.as_matrix()
	x = dataset[:,1:60]
	y = dataset[:,60]
	X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.33)
	# # y = dataset[:,60]
	# x_ =x[0:10000,:]
	# # y = dataset[0:10000,60]
	# y_ = y[0:10000]
	# x_test = x[11001:12001,:]
	# # y_test = dataset[1001:1201, -1].astype(int)
	# y_test = y[11001:12001]
	# print y_test
	# create a base classifier used to evaluate a subset of attributes
	print "starting"
	pca = PCA()#n_components = 2)#DecisionTreeRegressor() #RandomForestClassifier() #ExtraTreesClassifier()
	X_reduced = pca.fit_transform(scale(X_train))
	model = RandomForestRegressor() #ExtraTreesClassifier()
	model.fit(scale(X_reduced), y_train)
	print (model.score(scale(X_test),y_test))
	y_predict = model.predict(scale(X_test))
	df = pd.DataFrame(y_predict)
	path = 'data/results_RF_PCA.csv'
	# print (model.explained_variance_ratio_)
	print "done"
	# scores = cross_val_score(model, x, y)
	# print (scores.mean())
	df.to_csv(path)
开发者ID:nelango,项目名称:ViralityAnalysis,代码行数:35,代码来源:RFwithPCA.py

示例11: RandomForestModel

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def RandomForestModel(X_train,X_cv,y_train,y_cv):
	n_estimators = [5,10,20,30,40,50]

	best_random_forest = None
	best_mse = float('inf')
	best_score = -float('inf')

	print "################# Performing Random Forest ####################### \n\n\n\n"
	for estm in n_estimators:
		random_forest = RandomForestRegressor(n_estimators=estm)
		predictor = random_forest.fit(X_train,y_train)
		score = random_forest.score(X_cv,y_cv)
		mse = np.mean((random_forest.predict(X_cv) - y_cv) **2)
		print "Number of estimators used: ",estm
		print "Residual sum of squares: %.2f "%mse
		print "Variance score: %.2f \n"%score
		if best_score <= score:
			if best_mse > mse:
				best_mse = mse
				best_score = score
				best_random_forest = predictor	

	print "\nBest score: ",best_score
	print "Best mse: ",best_mse
	return best_random_forest
开发者ID:SaarthakKhanna2104,项目名称:Home-Depot-Product-Search-Relevance,代码行数:27,代码来源:RandomForest.py

示例12: randomForestRegressorStudy

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def randomForestRegressorStudy(X,Y, setSize, comment):
    #runs random forest regressor on the data to see the performance of the prediction and to determine predictive features 
    X_train=X[:setSize]
    X_test=X[setSize:]
    Y_train=Y[:setSize]
    Y_test=Y[setSize:]

    rf_reg=RandomForestRegressor(n_estimators=10)
    rf_reg.fit(X_train, Y_train)
    Y_pred=rf_reg.predict(X_train)
    print "random forest regressor for "+comment, rf_reg.score(X_train, Y_train), rf_reg.score(X_test, Y_test)
    print "feature importances", rf_reg.feature_importances_

    scores = cross_validation.cross_val_score(rf_reg, X, Y, cv=5)
    print "cross-validation"
    print scores
开发者ID:raisakarasik,项目名称:sleep-analysis,代码行数:18,代码来源:estimateAndPlot.py

示例13: estimators

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def estimators():
    score_list = []
    for x in xrange(5, 500, 5):
        RFC = RandomForestRegressor(n_estimators=x)
        RFC.fit(X_train, y_train)
        score = RFC.score(X_test, y_test)
        score_list.append(score)
    return score_list
开发者ID:ycbaek,项目名称:BillboardNextRank,代码行数:10,代码来源:6_Build_RF_model.py

示例14: test_oob_score_regression

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def test_oob_score_regression():
    """Check that oob prediction is pessimistic estimate.
    Not really a good test that prediction is independent."""
    clf = RandomForestRegressor(n_estimators=50, oob_score=True, random_state=rng)
    n_samples = boston.data.shape[0]
    clf.fit(boston.data[: n_samples / 2, :], boston.target[: n_samples / 2])
    test_score = clf.score(boston.data[n_samples / 2 :, :], boston.target[n_samples / 2 :])
    assert_greater(test_score, clf.oob_score_)
    assert_greater(clf.oob_score_, 0.8)
开发者ID:vd4mmind,项目名称:scikit-learn,代码行数:11,代码来源:test_forest.py

示例15: random_forest_regressor

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import score [as 别名]
def random_forest_regressor(X, y, weight):
    from sklearn.ensemble import RandomForestRegressor
    from sklearn import cross_validation

    
    X_train, X_test, y_train, y_test, weight_train, weight_test = cross_validation.train_test_split(
        X, y, weight, test_size=0.4, random_state=0)
    clf = RandomForestRegressor(n_estimators=20, max_features='sqrt', n_jobs=-1)
    clf.fit(X_train, y_train, weight_train)
    print(clf.score(X_test, y_test, weight_test))
开发者ID:organization-lab,项目名称:weibo-predict,代码行数:12,代码来源:regressor.py


注:本文中的sklearn.ensemble.RandomForestRegressor.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。