当前位置: 首页>>代码示例>>Python>>正文


Python RandomForestRegressor.predict_proba方法代码示例

本文整理汇总了Python中sklearn.ensemble.RandomForestRegressor.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python RandomForestRegressor.predict_proba方法的具体用法?Python RandomForestRegressor.predict_proba怎么用?Python RandomForestRegressor.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.RandomForestRegressor的用法示例。


在下文中一共展示了RandomForestRegressor.predict_proba方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: randomForestSecond

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import predict_proba [as 别名]
def randomForestSecond(train,
                 labels,
                 test,
                 prior_weight = None,
                 n_estimators=100,
                 n_jobs=1,
                 verbose=0):
    """

    :param train: The features of training data, obtained with getFeatures
    :param labels: The kaggle labels of the training data
    :param test: The faetures of testing data
    :param prior_weight: the normalized weights to which output will be rescaled
            by default: no rescaling. If 'auto', use ratio from kaggle training data
    :param n_estimators:
    :param n_jobs:
    :param verbose:
    :return:
    """
    if prior_weight == 'auto':
        prior_weight = [25810/35126.0,  2443/35126.0,  5292/35126.0,   873/35126.0,   708/35126.0]
    assert np.sum(prior_weight) < (1.0 + 1e-4) and np.sum(prior_weight) > (1.0 - 1e-4)

    model = RandomForestRegressor(n_estimators=n_estimators,
                                   n_jobs=n_jobs,
                                   verbose=verbose)

    print "Now training model..."

    model.fit(train, labels)


    print "Now predicting samples..."
    predictions = model.predict_proba(test)

    if prior_weight is not None:
        sortedpred = np.sort(predictions)
        indexratio = np.cumsum(prior_weight)
        n = len(sortedpred)
        indexes = [int(i * n) for i in indexratio[:-1]]
        thresholds = [sortedpred[i] for i in indexes] + [sortedpred[-1]]
        predictions = np.digitize(predictions, thresholds, right=True)

    return predictions
开发者ID:fvermeij,项目名称:cad-doge,代码行数:46,代码来源:secondLevel.py

示例2: print

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import predict_proba [as 别名]
              score.mean_validation_score,
              np.std(score.cv_validation_scores)))
        print("Parameters: {0}".format(score.parameters))
        print("")
    return(top_scores)

scores=report(random_search.grid_scores_)

kw=scores[0].parameters
kw.update({'n_estimators':500, 'n_jobs':7, 'verbose':1})

clf_large = RandomForestRegressor(**kw)
clf_large.fit(data[features].ix[data.null_flag==0,:], data[target].ix[(data.null_flag==0) ])

# evaluate
probs=clf_large.predict_proba(test[features])

test=pd.read_csv(path+'test.csv')

test.reset_index(drop=True, inplace=True)
data.reset_index(drop=True, inplace=True)

join_cols=[c for c in cols if c not in ['Semana']]
test=pd.merge(test, data[cols+['dr1', 'dr2', 'Demanda_uni_equil']], \
how='inner', left_on=list(join_cols), right_on=list(join_cols), suffixes=('','_d'))

days=test.Semana.unique()
days=days[np.argsort(days)]

df_list=[]
for i, d in enumerate(days):
开发者ID:andrew-skeen,项目名称:test2,代码行数:33,代码来源:bimbo3.py

示例3: main

# 需要导入模块: from sklearn.ensemble import RandomForestRegressor [as 别名]
# 或者: from sklearn.ensemble.RandomForestRegressor import predict_proba [as 别名]

#.........这里部分代码省略.........
    test["Child"] = 0
    test.loc[test["Age"] < 18, "Child"] = 1

    # Add in Mother column
    test["Mother"] = 0
    test.loc[(test["Age"] > 18) & (test["Sex"] == 1) & (test["Parch"] > 0) & (test["Title"] != 2), "Mother"] = 1

    def scale(data, features):
        scaled = MinMaxScaler().fit_transform(data[features])
        data[features] = scaled

    # Normalize data
    # scale(train, ["Fare"])
    # scale(test, ["Fare"])

    # Discretize Age
    # train.loc[train["Age"] < 18, "Age"] = 0
    # train.loc[train["Age"].between(18, 60), "Age"] = 1
    # train.loc[train["Age"] > 60, "Age"] = 2
    # test.loc[test["Age"] < 18, "Age"] = 0
    # test.loc[test["Age"].between(18, 60), "Age"] = 1
    # test.loc[test["Age"] > 60, "Age"] = 2

    # The columns we'll use to predict the target
    predictors = ["Pclass", "Sex", "Age", "Fare", "Embarked",
                  "FamilySize", "Title", "FamilyId", "Deck"]

    # Prepare predictors
    train_predictors = train[predictors]

    # Prepare target
    train_target = train["Survived"]

    # Create and train the random forest
    # Multi-core CPUs can use: rf = RandomForestClassifier(n_estimators=100, n_jobs=2)
    rf = RandomForestClassifier(n_estimators=150, min_samples_split=4, min_samples_leaf=2, oob_score=True)

    # Fit the algorithm to the data
    rf.fit(train_predictors, train_target)

    # Perform feature selection
    selector = SelectKBest(f_classif, k=5)
    selector.fit(train_predictors, train_target)

    # Get the raw p-values for each feature, and transform from p-values into scores
    scores = -np.log10(selector.pvalues_)
    print("Univariate feature selection:")
    for feature, imp in zip(predictors, scores):
        print(feature, imp)

    print("\nRANDOM FOREST METRICS:")

    # Feature importances
    print("\nFeature importances:")
    for feature, imp in zip(predictors, rf.feature_importances_):
        print(feature, imp)

    # Base estimate
    print("\nBase score: ")
    print(rf.score(train_predictors, train_target))

    # Cross validate our RF and output the mean score
    scores = cross_validation.cross_val_score(rf, train_predictors, train_target, cv=4)
    print("Cross validated score: ")
    print(scores.mean())

    # Out of bag estimate
    print("OOB score: ")
    print(rf.oob_score_)

    # Split the data into a training set and a test set, and train the model
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(train_predictors, train_target, test_size=0.25)
    rf.fit(X_train, y_train)

    # Output roc auc score
    disbursed = rf.predict_proba(X_test)
    print("Roc_auc score:")
    print(roc_auc_score(y_test, disbursed[:, 1]))

    # Print a confusion matrix
    y_pred = rf.predict(X_test)
    print("\nConfusion matrix (rows: actual, cols: prediction)")
    print(confusion_matrix(y_test, y_pred))

    # Ensemble
    ens = ensemble(train_predictors, train_target)

    # Predict
    predictions = ens.fit(train_predictors, train_target).predict(test[predictors])

    # Map predictions to outcomes (only possible outcomes are 1 and 0)
    predictions[predictions > .5] = 1
    predictions[predictions <= .5] = 0

    # Create submission and output
    submission = pd.DataFrame({
        "PassengerId": test["PassengerId"],
        "Survived": predictions
    })
    submission.to_csv("data/kaggle.csv", index=False)
开发者ID:slerman12,项目名称:WebMachineLearning,代码行数:104,代码来源:RandomForest.py


注:本文中的sklearn.ensemble.RandomForestRegressor.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。