当前位置: 首页>>代码示例>>Python>>正文


Python Bunch.text方法代码示例

本文整理汇总了Python中sklearn.datasets.base.Bunch.text方法的典型用法代码示例。如果您正苦于以下问题:Python Bunch.text方法的具体用法?Python Bunch.text怎么用?Python Bunch.text使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.datasets.base.Bunch的用法示例。


在下文中一共展示了Bunch.text方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import text [as 别名]

#.........这里部分代码省略.........
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Anytime active learning experiment - use objective function to pick data")
    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t

        student = get_student(clf, cost_model, sent_clf, sent_detector, vct)
        student.human_mode = args.expert == 'human'

        print "\nStudent: %s " % student

        train_indices = []
        neutral_data = []  # save the xik vectors
        train_x = []
        train_y = []
        neu_x = []  # data to train the classifier
        neu_y = np.array([])

        pool = Bunch()
        pool.data = data.train.bow.tocsr()  # full words, for training
        pool.text = data.train.data
        pool.target = data.train.target
        pool.predicted = []
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False
        current_cost = 0
        iteration = 0
        query_index = None
        query_size = None
        oracle_answers = 0
        calibrated=args.calibrate
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
            util = []

            if not bootstrapped:
                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                query = pool.data[query_index]
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:

                chosen = student.pick_next(pool=pool, step_size=step_size)

                query_index = [x for x, y in chosen]  # document id of chosen instances
                query = [y[0] for x, y in chosen]  # sentence of the document

                query_size = [1] * len(query_index)
开发者ID:mramire8,项目名称:active,代码行数:69,代码来源:sent_unc.py

示例2: main

# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import text [as 别名]

#.........这里部分代码省略.........
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Anytime active learning experiment - use objective function to pick data")
    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t
        if args.student in "anyunc":
            student = randomsampling.AnytimeLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
        elif args.student in "lambda":
            student = randomsampling.AnytimeLearnerDiff(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model, lambda_value=args.lambda_value)
        elif args.student in "anyzero":
            student = randomsampling.AnytimeLearnerZeroUtility(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
        else:
            raise ValueError("Oops! We do not know that anytime strategy. Try again.")

        print "\nStudent: %s " % student
        train_indices = []
        neutral_text = []  # save the raw text of the queries
        neutral_data = []  # save the xik vectors
        train_x = []
        train_y = []
        neu_x = [] # data to train the classifier
        neu_y = np.array([])

        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.text = data.train.data
        # pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        # pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False

        current_cost = 0
        iteration = 0
        query_index = None
        query_size = None
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
            util = []
            if not bootstrapped:
                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                query = pool.data[query_index]
                print "Bootstrap: %s " % bt.__class__.__name__
                print
开发者ID:mramire8,项目名称:active,代码行数:70,代码来源:anytime.py


注:本文中的sklearn.datasets.base.Bunch.text方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。